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Abstract   
In this paper, we investigated the periodic solutions of modified Duffing’s equation subjected to a bi-

harmonic parametric and external excitations. The method of multiple scales is used to construct a first order 

uniform expansion yielding two first-order non-linear ordinary differential equations are derived for the 

evolution of the amplitude and phase. These oscillations involve a super-harmonic and sub-superharmonic 

oscillations. Steady state responses and their stability are computed for selected values of the system parameters. 

The effects of  these (quadratic and cubic) non-linearities on these oscillations are specifically investigated. With 

this study, it has been verified that the qualitative effects of these non-linearities are different. Regions of 

hardening (softening) behavior of the system are exist for the case of sub-superharmonic oscillation. Numerical 

solutions are presented which illustrate the behavior of the steady-state response amplitude as a function of the 

detuning parameter.  

 

Keywords: Weakly non-linear differential equation, MEMS,  multiple scale method, parametric excitation and 

external excitation.  

 

1.  Introduction 

In recent years, many more of the numerical 

methods were used to solve a wide range of 

mathematical, physical and engineering problems 

linear and nonlinear.  In the present study, we use 

the method of multiple scales (MMS) for 

determination of the response of non-linearly 

oscillator to external excitation. For a 

comprehensive review, we refer the reader to [1]. 

     Zavodney et al. [2] studied the response of a 

model includes quadratic and cubic geometric non-

linearities. They found that stable limit cycles can 

exist.  Zavodney and Nayfeh [3] investigated the 

dynamics of a cantilever beam carrying a lumped 

mass. They modeled the structure with cubic 

geometric and intertia non-linearities. A thorough 

analysis of the governing equation of the motion 

has provided an accurate model of the dynamic 

response of such devices [4-6], which has been 

compared well with experimental results. The 

method of multiple scales is applied throughout. 

Asfar [7] took material non-linearity into 

consideration in the analysis of the performance of 

an elastomeric damper with a spring harding cubic 

effects near primary resonance condition applying 

multiple scale method. Kamel and Amer [8] studied 

the behavior of one-degree-of-freedom system with 

different quadratic damping and cubic stiffness 

non-linearities simulating the axial vibration of a 

cantilever beam under multi parametric excitation 

forces.The method of multiple scales has been used 

to solve the equations to first order perturbation. 

The theoretical results showed that controlled 

variations in the softening stiffness can have a 

significant effect on the overall non-linear response 

of the system, by making the overall effect 

hardening, softening, or approximately linear. Eissa 

and Amer [9] studied the vibration of a second 

order system to the first mode of a cantilever beam 

subjected to both external and parametric excitation 

at primary and sub-harmonic resonance. They 

analyzed the system using the method of multiple 

scales. Nayfeh [10] compared application of the 

method of multiple scales with reconstitution and 

the generalized method of averaging for 

determining higher-order approximations of three 

single-degree-of-freedom systems and a two-

degree-of-freedom system. He showed that the 

second-order frequency-response equation 

possesses spurious solutions for the case of 

softening nonlinearity. El-Bassiouny [11] 

investigated the effects of quadratic and cubic non-

linearities in elastomeric material dampers on 

torsional vibration control. The multiple time scale 

is used to solve the stability equations at primary 

resonance. The multiple scale perturbation 

technique is applied throughout. A threshold value 

of linear damping has been obtained, where the 

system vibration can be reduced dramatically. 

Masana and Daqaq [12] have carried out detailed 

studies of the post-buckled piezoelectric beam. 

However, the advantage of the bistable device over 

the linear device was not uniform, with the 

exception at very low frequencies when the bistable 

harvester was excited into high-energy orbits but 

the linear harvester was weakly excited. 

Superharmonic dynamics were specifically 

considered in a series of comparable tests and 

simulations [13]. Sebald et al [14] described a 

similar technique whereby an impulsive voltage 

could be applied in the harvesting circuit to achieve 

the same objective. theoretically. This reduces the 

computational cost since the electrostatic force term 

in the discretized equation will not require 

complicated numerical integration (integrating a 

numerator term over a denominator term 

numerically is computationally expensive) [15]. 
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    The problem of parametric resonance arises in 

many branches of physics and engineering. One of 

the important problems is that of dynamic 

instability. There are cases in which the influence 

of a small vibration loading can stabilize a system 

which is statically unstable and vice-versa. There 

are many books devoted to the analysis and 

applications of the problem of parametric excitation 

[16]. As an example McLachlan [17] discussed the 

theory and applications of the Mathieu functions. 

The treatment of the parametric excitation system, 

having many degrees of freedom and distinct 

natural frequencies, is usually operated by the 

multiple scales method as given by Nayfeh [18]. 

The interfacial stability with periodic forces is a 

relatively new topic in the theory of hydrodynamic 

stability. The mathematical analysis is more 

difficult because: (a) the method of normal modes 

is not applicable and (b) the linearized differential 

equations have time-dependent coefficients so that, 

the exponential time dependence of the perturbation 

is not separable. Elhefnawy and El-Bassiouny [19] 

studied the non-linear stability and chaos in 

Electrohydrodynamics.  El- Bassiouny[20]  

investigated the principal parametric resonance of a 

single-degree-of-freedom system with nonlinear 

two-frequency parametric and self-excitations. 

Qualitative analysis and asymptotic expansion 

techniques are employed to predict the existence of 

steady state responses. Stability condition is  

investigated. The effect of damping,  magnitudes  

of  non-linear excitation and self-excitation are 

analyzed. El-Bassiouny and Eissa [21] analyzed the 

behavior of two-degrees-of-freedom vibrating 

mechanical structure, which is described by two 

nonlinear differential equations with quadratic and 

cubic non-linearity's, subjected to multi-frequency 

parametric excitations in the presence of two-to-one 

internal resonance. Two approximate methods (the 

multiple scales and the generalized 

synchronization) are used to obtain a uniform first-

order expansion. The results obtained by the two 

methods are in excellent agreement.  Elnaggar et 

al.[22] studied harmonic and sub-harmonic 

resonance of micro-electro mechanical system 

(MEMS) subjected to a weakly non-linear 

parametric and external excitation. Elnaggar et al. 

[23] used the method of multiple scales to 

investigated the saddle node bifurcation control for 

an odd non-linearity problem. Elnaggar et al. [24] 

analyzed the perturbation analysis of an 

electrostatic Micro-Electro-Mechanical 

system(MEMS) subjected to external and non-

linear parametric excitations. Harmonic, sub-

harmonic and super-harmonic resonance of weakly 

non-linear dynamical system subjected to external 

excitation, parametric excitation or both are 

investigated by Elnaggar et al. [25].  

    In this paper an analysis of super-harmonic 

oscillation of order two and sub-superharmonic 

oscillation of order three-to-two are illustrated. Two 

first-order non-linear ordinary differential equations 

are derived for the evolution of the amplitude and 

phase with damping, non-linearity, and all possible 

solutions based on mathematically justified 

multiple scales method. Stability analysis are 

carried out for each case.  

 

2.  Formulation of the problem and perturbation 

analysis 

    The mathematical model of the Micro-Electro 

Mechanical Systems (MEMS) is represented by the 

following weakly non-linear second order 

differential equation  

Equation (1) represent modified Duffing equation 

subjected to weakly non-linear parametric and 

external excitations. This equation describes the 

main motions at time scales of the natural 

vibrations of the microstructure and fast dynamic at 

time scales of the high-frequency volotage. Where 

the dots indicate differentiation with respect to t , 

  is a small parameter,   is the coefficient of 

viscous damping, 0  is the linear natural 

frequency,   is frequency of the external 

excitation,   is the coefficient of linear and non-

linear terms respectively, 
1

  and 
2

  are the 

coefficients of the non-linear terms,
1

F  and 
2

F  are 

the coefficients of linear and nonlinear parametric 

excitations respectively.  

2 2 3 2 3 2 32 ( ) (2 3 4 ) (2 3 4 )
1 2

( cos[ ] cos[2 ]) ( cos[ ] cos[2 ]) = 0
1 2 1 2

u u u u u u u u u u uo

F t F t F t F t

      

 

          

              (1)

 

    To determine a first-order uniform expansion of the solutions of equation (1), one can use the method of 

multiple scales [26-29]. Let 

0 0 1 1 0 1 (2)
2( ; ) ( , ) ( , ) ( ), nu t u T T u T T O T tn      

 

Where 
0T t   is the first scale associated with changes occurring at the frequencies 0  and   and 1T t   is 

a slow scale associated with modulations in the amplitude.  Denote  
0

0

D
T





 and  
1

1

.D
T





 Substituting from 

equation (2) into equation (1) and equating the coefficients of like power of ,  one has the following equations 

to order (1)O  and to order )(O : 
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2 2  = 0o o o oD u u                                                                                                                                          (3) 

2 2 3

1 1 1 0 1 2 2

2

1 2

2 2 3

1 2 1

3

1 2 (4)

= 2 2 cos[ ] cos[2 ]
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The solution of equation (3) can be expression in the form  

                              0 0

0 0 1 1( , ) ( ) . ,
i T

u T T A T e c c


                                                                          (5)  

where A  is the amplitude of the response which is a function of 1T  and .c c  denotes the complex conjugate, 

substitute equation (5) into equation (4), we get  
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where the prime stands for the derivative with 

respect to ,1T overbar stands for the complex 

conjugate and  NST  stands for non-secular terms. 

Any particular solution of equation (6) contains 

secular terms and it may contain small-divisor 

terms depending on the resonance conditions, it can 

be seen that solutions occur when 
02 
 

and 

023  .  In what follows, we shall investigated 

super-harmonic oscillation of order two and sub-

superharmonic oscillation of order three-to-two of 

the equation (6). 

 

 

 

 

3. Super-harmonic solution )(2 o
 

In this case, we study sub-harmonic solution of 

order two-to-one with introducing the detuning 

parameters 1  to convert the small divisor term 

into secular terms 

0 12 =                                     (7) 

and write  

111 ==)( TTTTT ooooooo  
        

(8) 

Inserting equation (8) into equation (6) and 

eliminating the terms that produce secular terms in 

1u  yields the solvability condition 

0=)
2

1
(3312222 1

2

2

2

2 1Ti

oo eFAAAAAAAiAiA


 
                          

                   (9) 

 Expressing A  in the polar form 

          

)1(
11 )(

2

1
=)(

Ti
eTaTA


                                                                                                     (10) 

where a  and   are real functions of 
1T . 

Then substituting equation (10) into equation (9) and separating the real and imaginary parts of equation (9), one 

obtains 
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











 cos)

2

3
(1

2

1

8

3

2

3
= 2

232
1 Faa

a
aa

oooo











  (12) 

where 

 
1 1T   

It is obvious that, equations (11) and (12) have a 

trivial solution which of corresponds to the trivial 

steady state solution. Non-trivial steady state 

solution correspond to the non-trivial fixed points 

(equilibrium points) of equations (11) and (12). 

This means 0a     and are given by  
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 (15) 

Equations (14) and (15) show that there are two possibilities; (trivial solution at  0a   ) and (nontrivial 

solution at 0a  ). Squaring and adding equations (14) and (15) we get the frequency-response equation  

22

4422

2

622

2

422

2

224

2

42

1
8

16912423128
=

a

aFaFaFaaaa

o
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
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

  (16) 

Then, the first-order uniform expansion of the solution (first approximation) of equations (1) is given by  

 cos(2 2 ) ( )u a t O      (17) 

     The analysis of the stability of the trivial solutions is equivalent to the analysis of the linear solutions of 

equation (9) by neglecting the non-linear terms we get  

 0=
2

1
222 1

2

1 Ti

oo eFAiAiA


   (18) 

 To determine the stability of the trivial steady state solution, it is convenient to rewrite A  in the form  

 1 12
1 1= [ ( ) ( )]

i
T

A B T ib T e


  (19) 

 where B and b are separates real and imaginary parts and get 

 0=1Bbb    (20) 

 0=1bBB    (21) 

 

where 

o


  11 =

. Equations (20) and (21) admit solution of the form 1),(),(
T

o
i

ebBbB


 , 

where ),( bB  are constants. The eigenvalues of the coefficient matrix of equations (20) and (21) are  

1=  io            (22) 

Then, the trivial solution is stable if the real parts of both eigenvalues are less than or equal zero.  

    To determine the stability of the non-trivial steady state solutions given by equations (11) and (12). Let  

)(=&)(= 1111 TTaaa oo                  (23) 

where 
0a  and 

0  correspond to a non-trivial steady state solutions and 
1a  and 

1  are perturbations which are 

assumed to be small compared with 
0a  and 

0 . Inserting equation (23) into equations (11) and (12) and 

linearizing the resulting equations, we obtain  
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Equations (24) and (25) admit solution of the form 
1

)
2

,
1
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,
1

(

T
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   where )

2
,

1
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Provided that  
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The solution is stable if and only if the real part of 

each of the eigenvalues of the coefficient of the 

matrix are less than or equal to zero. 

 

4. Sub-super-harmonic solution )23( o
 

    In this section, we study sub-super-harmonic 

solution of order three-to-one.  To express the 

nearness of 3  to o2 , one introduces the 

detuning parameter   defined according to 

  o23                                                (27) 

Then one can write 

10000 22)23( TTTTT ooo    (28) 
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Then eliminating the secular terms from 

equation(6) 

yields

0=
2

3
312222 12

2

2

2

2 1Ti

oo eAFAAAAAiAiA


 
(29) 

Using equation (10) into the equation (29) and 

separating real and imaginary parts, we obtain the 

following modulation equations 


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where .3= 1  T  
 Substituting  a  and    equal zero into equations (30) and (31) gives the following 

equations for the steady state solutions 
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Eliminating the phase angle   from equations (32) and (33) gives the expression for the solutions curves for the 

solution 0a  as follows 
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 i.e.  
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Now, the analysis of the stability of the trivial 

solutions is determined as in the preceding section 

3, so that we get the eigenvalues equation is similar 

to equation (22). 

    Following a procedure similar to that in section 

3, one obtains the following eigenvalues that 

determine the stability of the steady state solutions 

)36(
38

)64768(384816481296576
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Consequently, a solution is stable if and only if the 

real parts of both eigenvalues (36) are less than or 

equal to zero.  

 

5. Numerical results 

    In this section, the numerical solution of the 

frequency response equations (16) and (35) are 

studied. Frequency response equations (16) and 

(35) are nonlinear algebraic equations in the 

amplitude ).(a  
The results are plotted in Fig (1-15), 

which present the variation of amplitude ).(a  

against the detuning parameters 
1  and .  

   Fig (1-8) represent the frequency response curves 

for super harmonic solution of order 2  for the 

parameters 

[ 2=1,=3,=3,=2,= 22   Fo
].  In  Fig 

(1) for positive value of all parameters, we note that 

the response amplitude has stable single-valued 

curve and the maximum value exist  at the point 

1  -0.48 . For negative value of  some 

parameters  

(
22 ,, F ), we observe that the maximum value 

shifts to the right so that the maximum value exist 

at the point 1 0.57,  Fig (2) When  takes the 

values 5 and 9, we note that the maximum shift to 

the left respectively so that the maximum values 

exist at the points 1 -2.79 and  1 -5.06,  Fig 

(3) For decreasing   with negative values (i.e.   

take the value  -5 and -9), we observe that the 

maximum shift to the right respectively so that the 

maximum values exist at the points 1 2.79 and  

1 5.05, Fig (4) When 13=2 , we note that 

the  singled-valued curves are intersect at the the 

same maximum value, see Fig (5) For increasing 

and decreasing the coefficient of nonlinear external 

excitation 2F  respectively,  we observe that the 

singled-valued curves shift upward and downward 

respectively and have increasing and decreasing 

maximum values, Fig (6,7,8). 

   Fig (9-15) represent the frequency response 

curves for sub-super harmonic solution of order 

(
2

3 ) for the parameters      

 [ 2=0.01,=3,=0.2,=0.3,= 22  Fo ].  

In Fig (9) for positive values, we observe that the 

response amplitude has multivalued curve which 

consistes of two branches while the lower branch 

has unstable solutions and the upper branch has 

stable solutions and there exist a saddle nodes 

bifurcations at the points  -4.28  and  -

4.34.  When 
2  takes the values 2 and 5, we 

observe that the multivalued curve contracted so 
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that the upper and lower branches are shifts to 

downward so that these branches have decreased 

magnitudes respectively. The saddle nodes 

bifurcations exist at the points  -4.30 and  -

1.69, Fig (10).  For decreasing 
2  with negative 

values (i.e. 
2  takes the values -2, -5), we note that 

the multivalued curve is contracted so that the 

upper and lower branches have decreased 

magnitudes respectively and the saddle nodes 

bifurcations exist at the points  4.01  and 

 1.46, Fig  (11). As the parameter   is 

decreased with positive values (i.e.   takes the 

values 0.1 and 0.01), we get the same variation as 

in Fig   (10)  so that the saddle nodes bifurcations 

exist at the points  -6.23 and  -4.33,  Fig 

(12). When the coefficient of nonlinear external 

excitation 
2F  is decreased, we observe that the 

multivalued curve is contracted so that the upper 

and lower branches are shifts to downward and 

upward so that the upper branch has decreased 

magnitudes and the lower branche has increased 

magnitudes. As ,3.02 F  we observe that the 

multivalued curve is contracted and given semi-

oval and the saddle nodes bifurcations exist at the 

points  2.01 and  2.11,  Fig  (13). For 

increasing the damping factor  , we note that the 

multivalued curve is contracted and the saddle 

nodes bifurcations exist at the points  -3.79and 

 3.89,  Fig  (14). When the natural frequency 

o  takes the values 0.9 and 2, we observe that the 

multivalued curve is contracted respectively so that 

the upper branch has stable and unstable solutions 

while the lower branch has stable and unstable 

solutions and these branches are intersect at the 

point  -4.31. The saddle nodes bifurcations 

exist at the points  -1.40 and  -0.49,  Fig  

(15). 

 

6. Summary and conclusions  

    An analytical and numerical technique is used to 

predict the qualitative change taking place in the 

stable solutions of the non-linear modified 

Duffing’s equation subjected to a bi-harmonic 

parametric and external excitations. The multiple 

time scales are used to investigate first-order 

approximate analytical solution. The modulation 

equations  (reduced equations) of the amplitude and 

phase are obtained. Steady state solutions and their 

stability are determined. The following conclusions 

can be deduced from the analysis:  

    From the frequency-response curves of super-

harmonic oscillation of order two in Figs  (1-8), we 

note that the response amplitude has single-valued 

curve and all solutions are stable. The maximum 

value shifts to the left and right for increasing and 

decreasing with decreasing   with negative values 

respectively. The maximum value shifts upward for 

increasing 
2F , 

o and for decreasing   . The 

maximum value shifts downward for decreasing 

2F  and for increasing 
o  and  .  

    From the frequency-response curves of sub-

superharmonic oscillation of order (
2

3 ), we 

observe that the response amplitude has 

multivalued curve. The stable and unstable 

solutions are exist in the upper and lower branches 

respectively. For positive (negative) values, we 

note that the multivalued curve bents to the right 

(left) and has harding (softing) behavior. When 

3.02 F  and ,4 we observe that the 

multivalued curve contracted and given semi-ovals. 

The upper branch of the multivalued curves are 

intersect at the same point  -4.31  when o  

takes the values 0.3, 0.9 and 2. 

 

  

Fig (1)  Fig (2) 

The frequency response curves of the super-harmonic solution of order 2  for the parameters           

2=1,=3,=3,=2,= 22   Fo
. 
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Fig (3) Fig (4) 

Variation of the amplitude of the response with the detuning parameter for increasing and decreasing  . 

 

 

  

Fig (5) Fig (6) 
Variation of the amplitude of the response with the detuning                Variation of the amplitude of the response with the   

 parameter for increasing  and decreasing 2                                              detuning parameter for increasing and decreasing 2F   

 

 

Fig (7) Fig (8) 
Variation of the amplitude of the response with the detuning      Variation of the amplitude of the response with the   

 parameter for increasing  and decreasing o                                      detuning parameter for increasing and decreasing    

   

 
Fig (9) 

The frequency response curves of the sub-super-harmonic solution of order 
2

3  for the parameters 

2=.01,=3,=0.2,=.3,= 22  Fo
. 
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                Fig (10)  Fig (11) 

Variation of the amplitude of the response with the detuning parameter for increasing and decreasing 2  . 

   

Fig (12) Fig (13) 
Variation of the amplitude of the response with the detuning           Variation of the amplitude of the response with the   

 parameter for increasing  and decreasing                                          detuning parameter for increasing and decreasing 
2F   

 

 

 

Fig (14) Fig (15) 
Variation of the amplitude of the response with the detuning                 Variation of the amplitude of the response with the   

 parameter for increasing  and decreasing o                                          detuning parameter for increasing and decreasing    
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