Posteriors Cruciate Ligament Retaining Versus Sacrificing in Total Knee Replacement

A.H. Adawy, EA. Tabl and I.M. El-Saify
Orthopedic Surgery Dept., Faculty of Medicine, Benha Univ., Benha, Egypt
E-Mail: El-Saify@gmail.com

Abstract

Foundation: Posterior cruciate tendon (PCL) is one of two cruciate tendons that settle the knee joint. The PCL attaches back intercondylar territory and passes anteroposteriorly to engraft into the horizontal surface of the average femoral condyle. The point of the current examination was to build up the distinction in useful, clinical, and radiological result among holding and expulsion of PCL in TKR. What's more, attempt to build up a connection between specific signs to one of the two procedures. Subjects and techniques: This audit was finished utilizing standard philosophy laid out in the Cochrane Handbook and announced the discoveries as per the Preferred Reporting Items for Systematic Reviews and Meta-investigations (PRISMA) proclamation rules. Our included examinations (Randomized preliminaries, Prospective correlation studies and Retrospective examination contemplates). Results: The writing search and cross-referring to brought about an aggregate of 142 articles Fig (1); 23 copies had been identified and eliminated, leaving 119 articles. Complete 111 articles were screened, of which 64 were dismissed due to off-subject modified works (22 articles), inability to fulfill the consideration models (14 articles), or both (28 articles). In the wake of perusing the excess 47 full-text articles, another 26 articles were rejected on account of insufficient subtleties and dubious analysis and result measures. At last, 21 articles on the treatment of patients with essential OA were incorporated. End: It was recommended that the advantages of PCL maintenance would be generally evident in the youthful and dynamic patients It give a more prominent possible scope of movement with successful femoral move back and a moderately level tibial articular surface. It goes about as a restriction to temporary dislodging of the knee. People with PCL holding prostheses have more balanced step, particularly during moving, than do people with either PCL forfeiting or PCL – subbing plans.

Keywords: Posterior cruciate ligament, Sacrificing, Total Knee Replacement.

1. Introduction

Back cruciate tendon (PCL) is one of two cruciate tendons that settle the knee joint. The PCL attaches back intercondylar territory and passes antero posteriorly to embed into the sidelong surface of the average femoral condyle [1].

The capacity of PCL is to keep the femur from sliding off the front edge of the tibia and to keep the tibia from dislodging back to the femur [2].

All out knee substitution (TKR) is a generally utilized activity that has profoundly improved the personal satisfaction of millions of individuals during most recent couple of many years. The clinical points of TKR incorporate help of agony, building up a practical scope of movement, giving joint strength and guaranteeing the prosthesis life span [3].

There is discussion with respect to whether the back cruciate tendon ought to be held or taken out during TKR [4].

Some possible points of interest of cruciate holding prosthetic plans incorporate protection of bone, more typical knee kinematics, increment proprioception, femoral move back on the tibia during flexion and more noteworthy adjustment of the prosthesis with the PCL forestalling foremost interpretation of the femur on tibia [5].

PCL forfeiting design incorporate suPP, lanting of PCL with polyethylene post and femoral cam that connect to forestall front interpretation of the femur on the tibia, while permitting femoral move back during flexion [6]. Potential focal points of these plan incorporate less actually requesting method, more steady segment interface and increment scope of movement [7].

The point of the current examination was to build up the distinction in utilitarian, clinical, and radiological result among holding and expulsion of PCL in TKR. What's more, attempt to set up a connection between specific signs to one of the two strategies.

2. Patient and method

This audit was finished utilizing standard procedure laid out in the Cochrane Handbook and detailed the discoveries as per the Preferred Reporting Items for Systematic Reviews and Meta-examinations (PRISMA) proclamation rules.

- The design: a comparative and non comparative studies between Pcl retaining and sacrificing in TKR
- Population: patients of all ages with total knee replacement
- Outcome measures: greater than or equal to one pre-specified quantifiable outcome measure (They included functional, clinical and radiological outcome).
- Level of evidence: papers provides levels I to III of evidence
- Follow up period: not less than two years of continuous follow up.

We searched of Medline (PubMed), the Cochrane Library, google researcher and Cumulative Index to Nursing and Allied Health Literature (CINAHL) for writing of PCL holding as oPP,osed to forfeiting in TKR done in period between 2010 till december 2019. We utilized watchwords to produce sets for the accompanying subjects: Total knee Arthroplasty, Posterior Cruciate Ligament Retaining and Sacrificing.
Studies that unmistakably not identified with our exploration question quickly prohibited.

Our included investigations (Randomized preliminaries, Prospective examination studies and Retrospective correlation contemplates).

We discovered 142 articles, 23 copies had been identified and taken out, leaving 119 articles. Complete 111 articles were screened, of which 64 were dismissed due to off-theme abstracts (22 articles), inability to fulfill the consideration measures (14 articles), or both (28 articles). Subsequent to perusing the leftover 47 full-text articles, another 26 articles were rejected in view of insufficient subtleties and questionable analysis and result quantities Finally 21 articles on the treatment of patients with essential OA were incorporated. Results was estimated by the accompanying:

Clinical outcome: comparing clinical outcome between both techniques according to Knee Society knee Score (KSS), Knee Society function score (KSFS).
1. Functional outcome including post operative range of motion, knee flexion and knee extension.
2. Kinematic characteristics including postoperative tibial and femoral component alignment, tibial posterior slope, joint line and femoral-tibial angle.
3. Incidence of complications either mild or sever complications in both techniques.

As regard the functional knee scores the response to each item is scored using an ordinal method (i.e., 0 for responses that represent the highest level of symptoms or lowest level of function). The most recent version has assigned scores for each possible response printed on the questionnaire. Scores for each item are summed to give a total score (excluding item 10a). The total score is calculated as (sum of items)/(maximum possible score) × 100, to give a total score of 100. An online scoring sheet is available.

Five domains: (1) pain frequency and severity during functional activities; (2) symptoms such as the severity of knee stiffness and the presence of swelling, grinding or clicking, catching, and range of motion restriction; (3) difficulty experienced during activities of daily living (ADL); (4) difficulty experienced with sport and recreational activities; and (5) knee-related quality of life (QOL).

3. Results

The literature search and cross-referencing resulted in a total of 142 articles Fig (1); 23 duplicates had been identified and removed, leaving 119 articles. Total 111 articles were screened, of which 64 were rejected because of off-topic abstracts (22 articles), failure to fulfill the inclusion criteria (14 articles), or both (28 articles). After reading the remaining 47 full-text articles, another 26 articles were excluded because of insufficient details and uncertain diagnosis and outcome measures. Finally, 21 articles on the treatment of patients with primary OA were included.

Fig (1) Prisma flow diagram
Table (1) Outcomes score of selected papers.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Scoring systems</th>
<th>WOMAC T SD</th>
<th>CR</th>
<th>PS</th>
<th>Outcomes score</th>
<th>Others T SD</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ang et al (2014)[8]</td>
<td>SF-36, KSS, OKS</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Preop 41 (26–49); postop 19 (12–38)</td>
<td>Preop 38 (20–58); postop 19 (12–38)</td>
<td>–</td>
</tr>
<tr>
<td>Bin Abd Razak et al (2013)[9]</td>
<td>KSS (knee and function score), OKS, SF-36, ROM</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Preop 34.4 T 8.0; 2 y postop 18.7 T 4.7</td>
<td>Preop 34.4 T 9.0; 2 y postop 19.3 T 5.3</td>
<td>SF-36 preop 33.7 T 10.9; 2 y postop 46.9 T 10.2</td>
</tr>
<tr>
<td>Carvalho et al (2014)[10]</td>
<td>ROM, femoral rollback</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>SF-36 preop 5.8 T 6.5 mm (— 5.6 to 18.2 mm)</td>
<td>–</td>
</tr>
<tr>
<td>Chen et al (2015)[11]</td>
<td>KSFS, KKS, OKS, ROM</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Preop 38 (28.43); 2 y postop 17 (16.23)</td>
<td>Preop 36 (30.43); 2 y postop 18 (16.23)</td>
<td>–</td>
</tr>
<tr>
<td>Delport (2013)[16]</td>
<td>Clinical KSS, KSFS</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Hamai et al (2015)[12]</td>
<td>KSS, KSFS, ROM, tibial posterior slope (deg)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Han et al (2012)[13]</td>
<td>KSS, HSS, WOMAC, ROM, complication</td>
<td>Preop 51.5 T 6.2; 2 y postop 9.2 T 91</td>
<td>Preop 52.3 T 7.7; 2 y postop 11.9 T 9.6</td>
<td>–</td>
<td>–</td>
<td>Flexion contrac- ture preop 3.2 deg T 5.4; 2 y postop 0.2 deg T 1.5</td>
<td>Flexion contrac- ture preop 3.6 deg T 4.9; 2 y postop 0.2 deg T 1.1</td>
</tr>
<tr>
<td>Lee et al (2012)[15]</td>
<td>KSS, HSS, WOMAC</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Mediolateral laxity preop 13.2, postop 13.3; anteroposterior laxity preop 9.1, postop 8.9; valgus preop 3.7, postop 6.5</td>
<td>Mediolateral laxity preop 13.4, postop 13.8; anteroposterior laxity preop 8.9, postop 7.7; valgus preop 3.5 postop 6.3</td>
</tr>
<tr>
<td>Liu et al (2015)[16]</td>
<td>WOMAC, KSS, ROM, Kellgren–Lawrence grading</td>
<td>Only graph displayed</td>
<td>Only graph displayed</td>
<td>–</td>
<td>–</td>
<td>Mediolateral laxity preop 13.2, postop 13.3; anteroposterior laxity preop 9.1, postop 8.9; valgus preop 3.7, postop 6.5</td>
<td>Mediolateral laxity preop 13.4, postop 13.8; anteroposterior laxity preop 8.9, postop 7.7; valgus preop 3.5 postop 6.3</td>
</tr>
</tbody>
</table>

Table (1) Continue
<table>
<thead>
<tr>
<th>Study</th>
<th>Outcome Measures</th>
<th>Preop/Mean Postop</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lützner et al (2015)[17]</td>
<td>KSS, OKS, UCLA activity score, ROM</td>
<td>19.0–30.0 at 3 mo/19.0–34.4 at 1 y</td>
<td>UCLA (maximum level 10) demonstrated minor improvement in self-assessed activity from median level 3 preoperatively to level 4 postop (1 y) 2 delayed wound healing, 1 mobilization under anesthesia was necessary due to restricted ROM at the 3-mo follow-up. DVT (n ¼ 4), myocardial infarction (n ¼ 1), implantation of a cardiac pacemaker (n ¼ 1), postoperative delirium (n ¼ 1), and gastrointestinal problems (n ¼ 6)</td>
</tr>
<tr>
<td>Matsumoto et al (2012)[18]</td>
<td>KSS, KSFS, ROM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouttet and Sourdet (2014)[19]</td>
<td>KSS (functional, walking, stair, knee score, pain, flexion)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peters et al (2014)[20]</td>
<td>KSS (total, clinical and functional), complication</td>
<td></td>
<td>1 death, 4 manipulations, 1 reoperation, 21 revision, 7 septic, 14 aseptic, 6 instabilities, 3 loosening, 2 patella resurfacing, 1 patellar crepitus, 1 joint stiffness</td>
</tr>
<tr>
<td>Sando et al (2011)[21]</td>
<td>KSS (function and knee score), WOMAC (pain, stiffness, and function score), ROM, HSS, WOMAC, ROM, Radiographs</td>
<td>Function preop: 42.2 T 16.1; 10 y postop: 62.6 T 26.1; 10 y postop: 72.5 T 21.7</td>
<td>3 patella resurfacing, 1 patellar crepitus, 1 joint stiffness, 1 dislocation, 1 osteolysis</td>
</tr>
<tr>
<td>Seon et al (2011)[22]</td>
<td>KSS, ROM, Radiographs</td>
<td>Postop: 28.4 T 13.8; Postop: 27.9 T 12.2</td>
<td>HSS: 94.7 T 4.3; HSS: 93.9 T 4.7; None detected</td>
</tr>
<tr>
<td>Cho et al. (2016)[23]</td>
<td>KSS, ROM, complications</td>
<td></td>
<td>None detected</td>
</tr>
<tr>
<td>van den Boom et al (2014)[24]</td>
<td>KSS, ROM, WOMAC, knee moment (nm/kg)</td>
<td>Preop: 53 T 20; postop: 15 T 10</td>
<td>3 stiff knees 1 stiff knee, 1 infection (drained an antibiotics)</td>
</tr>
</tbody>
</table>

4. Discussion

The main consequences of this deliberate audit is that a measurable distinction was found regarding postoperative improvement in KSFS (p < 0.00001), and augmentation (p < 0.0002), which show more noteworthy upgrades for the PS bunch contrasted and the CR gathering. This finding is predictable with the writing, which collectively reports better ROM after PS TKAs.11 unexpectedly, there was no significant distinction between the CR and PS strategies regarding postoperative complexities (p < 0.29) or the KSOS (p < 0.82). This raises the likelihood that a factual distinction in one result measure may not mean a clinical contrast in general. Since the KSOS and the KSFS scores are emotional measures, there is need for more target aPP.aratases that evaluate persistent capacity which can possibly depict a reproducible contrast.

The patient socioeconomics of this orderly audit for the CR and PS bunches are very much like. The comparative utilization of CR strategy (47.9%) contrasted and the PS technique (52.1%), related to the measurably comparative KSOS and entanglement rates, further offers weight to the speculation that the decision of imperative relies chiefly upon singular patient variables notwithstanding specialist inclination. An examination on the patterns of TKAs for treatment of OA revealed that in 2012, 38% of TKA systems were CR, having brought down from half in 2013. This was contrasted and 53% utilizing a PS technique, up from 31% in 2010. In spite of different investigations show that neither one of the methods has prevalence, this expansion in the utilization of the PS strategy is hypothesized to have been multifactorial. There might be, nonetheless, specific essential TKA tolerant partners to which either the CR or PS technique would be more manageable. As CR TKAs have been found to keep up more prominent dependability because of maintenance of the cruciate tendon, this method would hypothetically be generally fit to patients who are at more serious danger of falls. Despite the fact that OA and osteoporosis are seen in various patient companions, the unfortunate patient with both will have a higher danger of crack if the method demonstrated to be less steady or the PS bunch. This finding is predictable with the writing, which collectively reports better ROM after PS TKAs.11 unexpectedly, there was no significant distinction between the CR and PS strategies regarding postoperative improvement in KSFS (p < 0.00001), and augmentation (p < 0.0002), which show more noteworthy upgrades for the PS bunch contrasted and the CR gathering. This finding is predictable with the writing, which collectively reports better ROM after PS TKAs.11 unexpectedly, there was no significant distinction between the CR and PS strategies regarding postoperative improvement in KSFS (p < 0.00001), and augmentation (p < 0.0002), which show more noteworthy upgrades for the PS bunch contrasted and the CR gathering. This finding is predictable with the writing, which collectively reports better ROM after PS TKAs.11 unexpectedly, there was no significant distinction between the CR and PS strategies regarding postoperative improvement in KSFS (p < 0.00001), and augmentation (p < 0.0002), which show more noteworthy upgrades for the PS bunch contrasted and the CR gathering.
5. Conclusion
It was recommended that the advantages of PCL maintenance would be generally evident in the youthful and dynamic patients. It give a more prominent possible scope of movement with viable femoral move back and a moderately level tibial articular surface. It goes about as a limitation to momentary removal of the knee. People with PCL holding prostheses have more even step, particularly during moving, than do people with either PCL forfeiting or PCL – subbing plans.

References


