Maternal and neonatal serum lipid levels in preeclamptic females and its correlation with neonatal respiratory distress syndrome

B.E. Hassanin1, O.A. El Feky1, M.E. Fouda2, H.A. Torky3, M. Bahaa4, I.E. Radwan5
1Pediatrics, Dept., Faculty of Medicine, Benha Univ., Benha, Egypt
2Clinical and Chemical pathology, Dept., Faculty of Medicine, Benha Univ., Benha, Egypt
3Gyna & Obst., Dept., Faculty of Medicine, 6th October Univ., Cairo, Egypt
4Fellow of Pediatrics, Dept., Faculty of Medicine, El Galaa Teaching Hospital, Cairo, Egypt
5Pediatrics Specialist, Dept., Faculty of Medicine, Shbin Elkom Teaching Hospital, Cairo, Egypt
E-mail: eslameldesoky1980@gmail.com

Abstract
Background: There have been biological exaggerations of lipid production among women with preeclampsia, but the function of serum lipids in the development of preeclampsia is unclear. In women with preeclampsia, high density lipoprotein (HDL) and LDL have been found to be lower in preeclampsia when plasma concentrations of triglycerides (TG), total cholesterol (TC), low density lipoprotein (LDL) and very low density lipoprotein (VLDL) have been increased. The current research aimed at evaluating maternal and newborn serum lipid levels and their association to neonatal respiratory distress syndrome in preeclamptic females. Methods: This is a case-control research that included two identical groups of preterm infants between 28-34 weeks, with preeclampsia as pre-existing status and normotensive moms. Results: In newborn moms with pre-term labour, RD was shown to be substantially greater than women with pre-eclampsia (P<0.05). We discovered that newborns with RD of mothers with pre-eclampsia and mother with child lipid profiles had higher maternal levels of total cholesterol, triglycerides and LDL, but lower levels of HDL, although this variation remained insignificant. The cord level of LDL and triglycerides in the RDS group was nevertheless lower. Conclusion: Maternal lipid levels are an indicator for RDS prediction. In pregnancies complicated by preeclampsia, higher maternal serum lipids have been found. In children and their mothers, RDS is accompanied with lipid changes.

Key words: Respiratory distress syndrome, preeclampsia, preterm.

1. Introduction
The impact of pre-eclampsia and eclampsia on pregnant mothers, their foetuses, and their infants is catastrophic. The risk of neonatal mortality and increased risk of poor Apgar scores, seizure, neonatal encephalopathy and neonatal intense care is about 2 times that of newborn mothers with pre-eclampsia [1].

The primary cause of newborn respiratory failure and mortality, along with hospitalisation in Neonatal Intensive Care Unit (NICU) [2] is NRDS. Neonatal Intensive Distress Syndrome (NRDS) Respiratory distress syndrome (RDS) is one of the most frequent premature birth problems. Preterm RDS is secondary to insufficient surfactants and is typically reciprocally linked to gestational age (GA). There are contradictory facts in the literature on the impact of pre-eclampsia on RDS in preterm [3].

Lipid metabolism plays a leading role in the late stage of pregnancy foetal growth, including the growth and growth of adipose tissue in foetal intrauterine life [4]. Lipid metabolism also plays a major function in cholesterol transfer in the production of hormones in the surrenal glands of the foetus. It was discovered that higher amounts of amniotic lecithin are linked to respiratory maturation and alterations in phospholipid concentrations in the amniotic fluid [5]. The current research aimed at evaluating maternal and newborn serum lipid levels and their association to neonatal respiratory distress syndrome in preeclamptic females.

2. Patients and Methods
The present study included 90 mothers that were subdivided into 2 groups:

- **Group 1**: which included preeclamptic mothers that gave birth at 28&34 weeks gestation and their neonates
- **Group 2**: which included women with preterm labor delivering at the same gestational age (28&34) and their neonates.

2.1. Inclusion Criteria

Group 1:
- Gestational age between 28&34 weeks.
- No other maternal abnormalities.
- No fetal abnormalities.

Group 2:
- Gestational age between 28&34 weeks.
- No other maternal abnormalities.
- No fetal abnormalities.

2.2. All patients will be subjected to the following

The mother
- Full antenatal & perinatal and natal and postnatal history.
- Dating scan.
- Anomaly scan.
- U/S: within one week before delivery (latest u/s).
- Any additional data were recorded.

The neonate:
- Through clinical examination.
- Blood samples were collected from patients after 12 hours fasting for determination of the serum.
level of triglycerides total cholesterol LDL HDL and VLDL that will be interpreted
the mean serum lipid concentrations of the two groups will
be compared using student’s test.

2.3. Statistical analysis
The collected data were tabulated and analyzed using SPSS version 24 software (SpssInc, Chicago, ILL Company). Categorical data were presented as number and percentages. Chi square test (X²), or Fisher’s exact test (FET) were used to analyze categorical variables. Quantitative data were tested for normality using Shapiro-Wilkstest, assuming normality at P>0.05, they were expressed as mean ± standard deviation. Student "t" test was used to analyze normally distributed variables among 2 independent groups. While non-parametric variables were analyzed using Man Whitney U test. P value >0.05 is non-significant (NS) P<0.05 is significant (S).

3. Results
By analyzing and processing the data obtained from the history and examination, the study declared that: TG was significantly higher in patients with pre-eclampsia than patients with pre-term labor (P < 0.05). (Table 1 & Fig 1). TC was significantly higher in patients with pre-eclampsia than patients with pre-term labor (P < 0.05) (Table 2 & Fig 2). In the present study we found that HDL was significantly lower in patients with pre-eclampsia than patients with pre-term labor (P < 0.05) (Table 3). LDL was significantly higher in patients with pre-eclampsia than patients with pre-term labor (P < 0.05) (Fig 3). Cord HDL was lower in pre-eclampsia group that preterm group and both of LDL and triglyceride were higher in pre-eclampsia group that preterm group although this difference still of no significant difference (P > 0.05).

RD was significantly higher in newborn of mothers with pre-term labor than mothers with pre-eclampsia (P< 0.05) Figure (4). Percentage of SGA was higher in newborn of mothers with pre-eclampsia than mothers with pre-term labor. Newborn with RD had higher maternal levels of total cholesterol, triglycerides and LDL but lower level of HDL although this difference still non significant. However, cord level of LDL and triglycerides were lower in RDS group.

Table (1) Comparison of the TG between patients with pre-eclampsia and patients with pre-term labor

<table>
<thead>
<tr>
<th></th>
<th>Pre-eclampsia</th>
<th>Pre-term labour</th>
<th>X²</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>mother.TG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borderline</td>
<td>10 (22.2%)</td>
<td>12 (26.7%)</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>21 (46.7%)</td>
<td>7 (15.6%)</td>
<td>10.782</td>
<td>0.0024</td>
</tr>
<tr>
<td>Normal</td>
<td>14 (31.1%)</td>
<td>26 (57.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mother.TG. mg/dL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean±SD</td>
<td>198.07±60.825</td>
<td>158.29±33.361</td>
<td>t= 3.846</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Fig. (1) Bar chart showing comparison of the TG between patients with pre-eclampsia and patients with pre-term labor

Table (2) comparison of the TC between patients with pre-eclampsia and patients with pre-term labor

<table>
<thead>
<tr>
<th></th>
<th>Pre-eclampsia</th>
<th>Pre-term labour</th>
<th>X²</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>mother.TC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borderline</td>
<td>13 (28.9%)</td>
<td>16 (35.6%)</td>
<td>11.306</td>
<td>0.004</td>
</tr>
<tr>
<td>High</td>
<td>20 (44.4%)</td>
<td>6 (13.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>12 (26.7%)</td>
<td>23 (51.1%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mother.Tc.mg/dl</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean±SD</td>
<td>232.38±38.210</td>
<td>201.40±35.843</td>
<td>t= 3.966</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Fig. (2) Bar chart showing comparison of the TC between patients with pre-eclampsia and patients with pre-term labor

Table (3) Comparison of the HDL between patients with pre-eclampsia and patients with pre-term labor

<table>
<thead>
<tr>
<th>mother.HDL</th>
<th>Pre-eclampsia N=45</th>
<th>Pre-term labour N=45</th>
<th>X^2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borderline</td>
<td>16 (35.6%)</td>
<td>8 (17.8%)</td>
<td>6.597</td>
<td>0.037</td>
</tr>
<tr>
<td>Low</td>
<td>12 (26.7%)</td>
<td>8 (17.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>17 (37.8%)</td>
<td>29 (64.4%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

mother.HDL-C. mg/dL: Mean±SD

<table>
<thead>
<tr>
<th></th>
<th>Pre-eclampsia</th>
<th>Pre-term labour</th>
<th>t</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean±SD</td>
<td>56.36±14.796</td>
<td>66.62±16.735</td>
<td>-3.083</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Fig. (3) Bar chart showing comparison of the LDL between patients with pre-eclampsia and patients with pre-term labor

Fig. (4) Bar chart showing comparison of incidence of RD between newborn of mothers pre-eclampsia and mothers with pre-term labor
4. Discussion

In this research TG in patients with pre-eclampsia was considerably greater than in patients with pre-term labour (P<0.05). Our findings of increased maternal TG in preeclampsia are consistent with many preceding studies that have shown increased lipids in both normal pregnancy and preeclampsia [6].

The mechanism by which hyperlipidemia is caused by pregnancy has not been completely clarified. High maternal triglyceride levels may constitute hyperlipidemia or hyperlipidemia risk. Increased maternal level of TG may have a role in PE pathogenesis and possibly detect pregnant women at risk of preeclampsia and long-term cardiovascular risk [6]. Triglycerides and free fatty acids were previously shown to be higher in pre-eclamptic women in the first and second trimesters [7]. During pregnancy, triglyceride levels also rise in response to action in oestrogen and lipase. In the tissue level, decreased lipoprotein lipase activity and resistance to insulin lead to lower lipid catabolism, which produces hypertriglyceridemia [8]. However, several earlier researches should be noted, which did not indicate significant changes in lipid parameters in both groups [9, 1].

In this research, the TC was much greater in pre-eclampsia patients than in pre-term labour patients (P < 0.05). The investigations performed in China and India has shown similar results [11, 12]. During pregnancy the level of plasma cholesterol rises in response to an increased oestrogen driven lipoprotein synthesis or a failure to remove lipoprotein lipids. For placental steroid and Placental membrane-synthesis, higher plasma cholesterol levels are utilised and stored as a maternal fat reserve that acted as fuel both for the mother and the developing baby later in pregnancy or lactation[13].

In the current research we discovered that HDL in pre-eclampsia than individuals with pre-term labour was substantially lower (P < 0.05). The research performed [12, 14] showed similar results. HDL transports cholesterol from peripheral tissues to the liver, which is separated for excretion and utilised for biomolecular synthesis. Higher levels of HDL lipoprotein are protective against high blood pressure and cardiovascular disease [15].

In the current research, LDL in patients with pre-eclampsia was substantially greater than in pre-laboratory individuals (P < 0.05). Evidence has also been revealed in an earlier study [16]. The pathophysiology of pre-eclampsia is associated with increased lipid oxidation products and reduced antioxidant levels [17]. Various reporting has shown that in females with higher oxidised low density lipoprotein (LDL) and triglyceride (TG) levels of circulating vitamin C compared to normal intensive pregnant women the risk of pre-eclampsia increases [18]. The oxidative conversion of LDL-cholesterol to LDL oxidised forms is the essential event for atherosclerosis and hypertension start and progression [19].

In the current research, we observed that in the pre-eclampsia group, the cord HDL was lower, while both the preterm group and the LDL and triglyceride were greater than the pre-eclampsia group while there was no significant difference (P>0.05).

Ophir and his colleagues found no such connection and only saw modest rise in LDL-C in preeclamptic pregnancy UCB [20], while Rodie and colleagues noted substantial increases in the TG, TC and TC/HDL-C ratios of preeclamptic women's foetuses in UCB[21].

A theoretical explanation given by Romanowicz and Bańkowski indicated the buildup cholesterol in the umbilical cord wall may result in "early ageing" of the umbilical cord tissue, thereby triggering the development of hypertension.

We observed in the current research that RD was considerably greater in pre-term moms than in pre-eclampsia (P<0.05). An earlier research has shown a

Table (4) correlation between the mother TG and the other mother and newborn measurements.

<table>
<thead>
<tr>
<th></th>
<th>mother.TG. mg/dL</th>
<th>r</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>mother.Tc.mg/dl</td>
<td>0.438*</td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>mother.HDL.C. mg/dL</td>
<td>-0.416</td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>mother.LDL.C. mg/dL</td>
<td>0.590"</td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>Age.years</td>
<td>0.025</td>
<td></td>
<td>0.818</td>
</tr>
<tr>
<td>Mother weight.Kg</td>
<td>-0.079</td>
<td></td>
<td>0.462</td>
</tr>
<tr>
<td>systolic.BP</td>
<td>0.277"</td>
<td></td>
<td>0.008</td>
</tr>
<tr>
<td>Diastolic.BP</td>
<td>0.299"</td>
<td></td>
<td>0.004</td>
</tr>
<tr>
<td>Newborn weight</td>
<td>-0.115</td>
<td></td>
<td>0.282</td>
</tr>
<tr>
<td>GA.weeks</td>
<td>-0.168</td>
<td></td>
<td>0.113</td>
</tr>
<tr>
<td>APGAR.1min</td>
<td>-0.041</td>
<td></td>
<td>0.704</td>
</tr>
<tr>
<td>APGAR.5min</td>
<td>0.014</td>
<td></td>
<td>0.894</td>
</tr>
<tr>
<td>newborn.TC.mg.dl</td>
<td>-0.017</td>
<td></td>
<td>0.872</td>
</tr>
<tr>
<td>Newborn.HDL.C.mg.dl</td>
<td>-0.111</td>
<td></td>
<td>0.299</td>
</tr>
<tr>
<td>Newborn.LDL.C.mg.dl</td>
<td>-0.219</td>
<td></td>
<td>0.038</td>
</tr>
<tr>
<td>Newborn.TG.mg.d</td>
<td>-0.258</td>
<td></td>
<td>0.014</td>
</tr>
</tbody>
</table>

66 Maternal and neonatal serum lipid levels in preeclamptic females and its correlation with neonatal
reduced incidence of RDS in babies with pre-eclampsia mothers; it was hypothesised that in the pre-eclampsia group more protective variables existed than in the control group [3]. Maternal pre-eclampsia has been shown to have a protective impact against RDS, and foetal lung maturity has been accelerated [23].

In the current research, we discovered that SGA is greater in pre-eclampsia moms than in preterm mothers. A recent research has shown that the status of SGA is a frequent pre-eclampsia complication with a widespread 13.36–52 percent incidence[24]. Although the link between pre-eclampsia and severe RDS in their subgroup analysis had been negligible in an earlier research, the trend towards higher risk in both categories remained continuous. This result shows that pre-eclampsia and SGA do not interact substantially with RDS. In the whole dataset, 95 percent of CIs for the combination of preeclampsia and severe RDS have been extremely near to 1, which may explain why a substantial difference in the analytics in the subgroup of this small sample has been not detected [3].

Newborns with RD exhibited greater maternal concentrations of total cholesterol, triglycerides and LDL but lower HDL while the difference was still not significant. The cord level of LDL and triglycerides in the RDS group was nevertheless lower. In neonates without RDS and in the patients with RDS, the latest research revealed an important direct connection between gestational age and triglyceride and cholesterol levels [25, 24].

Fetal development relies directly on the nutrients that go through the placenta to the infant. Mother adjusts her metabolism to the constant supply and bodily requirements of nutrients [26].

Bansal and his colleagues have shown that the placenta may be passed through by maternal cholesterol and that its mother concentration influences the neonate level [27]. Pregnancy and delivery factors, as well as specific conditions, may affect the metabolism of foetal and neonatal lipids. Cholesterol synthesis inhibition results in poor surfactant production. Premature babies with RDS were shown to have substantially lower amounts of cord lipid serum than normal term infants. Although only preterm infants have been included in the current research and the differences in cord serum lipid levels have not been documented [28]. Furthermore, low cord serum lipids limit foetal development in the uterus, and may delay the ripening of the foetal lungs [26]. Placental transportation of lipid components in preterm babies who had RDS may be proposed to be abnormal [28].

6. Conclusion

Maternal levels of lipids are a guide for the development of pered RDS. In pregnancies affected by preeclampsia, higher maternal serum lipids have been observed. In children and their mothers, RDS is accompanied with lipid changes. Moms who had RDS with pre-Eclampsia exhibited moderate dyslipidemia.

References

[12] E.Jasovic-Siveska, D.Milkovski Maternal plasma lipid concentration in first and second trimester of pregnancy and risk of

