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Abstract 

This paper was devoted to study the error behaviour of the solutions for Fredholm and Volterra integral equations of the second 

kind using Collocation and Galerkin methods at N=3:100. This paper started with an introduction to show the related work. In 

addition, we presented the analysis of the numerical methods which we used. Under certain conditions, Banach’s fixed point theorem 

was used to prove the existence and uniqueness for the error integral equation. We presented a comparison between the maximum 

and minimum errors obtained by Collocation and Galerkin methods. Moreover, some applications were given to satisfy our study. 

Results were represented in groups of tables and figures. 
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1. Introduction 

Many physical problems are modeled in the form of IEs [2, 

6], so solving IEs plays an important role in many applications. 

There are some books present different methods to solve them 

[2, 3, 5, 6, 14, 17, 18]. In the last two decades, many authors 

devoted many articles to solve IEs numerically. Kotsireas [7] 

presented a survey on solution methods for IEs. Mandal and 

Bhattacharya [9] obtained Appr. solutions of some classes of 

FIEs, using Bernstein polynomials as basis. Rahman [13] 

discussed numerical solutions of VIEs, using GM with Hermite 

polynomials. Numerical treatment for FIE of the second kind 

is devoted by Rihan [15]. Qatanani [16] discussed analytical 

and numerical solutions of VIES of the second kind. Mamadu 

and Njoseh [8] presented numerical technique to solve VIEs, 

using GM with orthogonal polynomials. Babasola and Irakoze 

[4] provided CM for numerical solutions of FIEs with certain 

orthogonal basis functions in interval [0,1]. Also, Aigo used 

SR and TR for solving VIEs of the second kind [1]. Nadir and 

Rahmoune [12] presented a numerical method to solve VIEs of 

the second kind based on the adaptive SR. A modified SR for 

solving FIEs of the second kind is discussed by Mirzaee and 

Piroozfar [10]. Therefore, Mirzaee [11] investigated a 

numerical method for solving FIEs of second kind based on 

SR.  

This paper is devoted to study the stability of error of some 

numerical methods for solving FIEs and VIEs. We concentrate 

our interest on using CM and GM. Also, we studied the 

behavior of errors at fixed points in each case, investigating the 

Max. and Min. error at each point and corresponding N 

functions. 

2.  Numerical Methods  

 There are many numerical techniques for solving FIES and 

VIES of the second kind [2, 3, 5, 6, 18]. So, we concentrate 

our interest to use CM and GM. 

Solving FIEs and VIEs using CM 

Consider the following FIE of the second kind  

𝜇𝜙(𝑥) = 𝑓(𝑥) + 𝜆 ∫
𝑏

𝑎
𝑘(𝑥, 𝑡)𝜙(𝑡)𝑑𝑡 (2.1) 

 where 𝑥 = 𝑥(𝑥1, 𝑥2, . . . , 𝑥𝑛) and 𝜇 and 𝜆 are constants 

which has a unique solution under the following conditions:   

• The known function 𝑓(𝑥)  is continuous in the space 

𝐿2([𝑎, 𝑏] × [𝑎, 𝑏])  and its norm is defined as ∥ 𝑓(𝑥) ∥=

[∫
𝑏

𝑎
|𝑓(𝑥)|2𝑑𝑥]

1

2
≤ 𝐴.  

  • The kernel 𝑘(𝑥, 𝑡) ∈ 𝐿2([𝑎, 𝑏] × [𝑎, 𝑏])  ∀  𝑥, 𝑡 ∈ [𝑎, 𝑏] 
and satisfies |𝑘(𝑥, 𝑡)| ≤ 𝐵, 

where 𝐴 and 𝐵 are constants. 

Using CM in Eq.(2.1), we get  

  

𝜇𝑆𝑁(𝑥) = 𝑓(𝑥) + 𝜆 ∫
𝑏

𝑎
𝑘(𝑥, 𝑡)𝑆𝑁(𝑡)𝑑𝑡 + 𝐸(𝑥, 𝑐1 , 𝑐2 , . . . , 𝑐𝑁)   (2.2) 

 where  
 𝑆𝑁(𝑥) = ∑𝑁

𝑖=1 𝑐𝑖𝜓𝑖 ,                         (2.3) 
 𝑐𝑖  are unknown constants and 𝜓𝑖  are linearly 

independent functions. 

The error in Eq.(2.2) vanishes at 𝑁 points 𝑥1, 𝑥2, . . . , 𝑥𝑁, 

so Eq.(2.2) becomes  

  
𝐸(𝑥𝑖 , 𝑐1, 𝑐2, … , 𝑐𝑁) = 𝜇𝑆𝑁(𝑥𝑖) − 𝑓(𝑥𝑖) 

           −𝜆 ∫
𝑏

𝑎
𝑘(𝑥𝑖 , 𝑡)𝑆𝑁(𝑡)𝑑𝑡,        1 ≤ 𝑖 ≤ 𝑁.            (2.4) 

 Also, for the following VIE of the second kind  

 𝜇𝜙(𝑥) = 𝑓(𝑥) + 𝜆 ∫
𝑥

𝑎
𝑘(𝑥, 𝑡)𝜙(𝑡)𝑑𝑡.    (2.5) 

 If the kernel 𝑘(𝑥, 𝑡) is continuous in the interval 0 ≤ 𝑡 ≤
𝑥 ≤ 𝑋 and the known function 𝑓(𝑥) also continuous in the 

interval 0 ≤ 𝑥 ≤ 𝑋, then Eq.(2.5) has a unique solution under 

the following conditions:   

• The known function 𝑓(𝑥)  is continuous in the Space 

𝐶[𝑎, 𝑋], ∀𝑥 ∈ [𝑎, 𝑋] and satifies |𝑓(𝑥)| ≤ 𝐶.  

• The kernel 𝑘(𝑥, 𝑡) ∈ 𝐶[𝑎, 𝑋], 𝑥, 𝑡 ∈ [𝑎, 𝑋] and satisfies 

|𝑘(𝑥, 𝑡)| < 𝐷.  

 Where 𝐶 and 𝐷 are constants. 

Applying CM to Eq.(2.5) yields  

𝜇𝑆𝑁(𝑥) = 𝑓(𝑥) + 𝜆 ∫
𝑥

𝑎

𝑘(𝑥, 𝑡)𝑆𝑁(𝑡)𝑑𝑡 

                 +𝐸(𝑥, 𝑐1, 𝑐2, . . . , 𝑐𝑁).                      (2.6) 

Insisting the error in Eq.(2.6) vanishes at 𝑁  points 

𝑥1, 𝑥2, . . . , 𝑥𝑁, Eq.(2.6) becomes  
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 𝐸(𝑥𝑖 , 𝑐1, 𝑐2, … , 𝑐𝑁) = 𝜇𝑆𝑁(𝑥𝑖) − 𝑓(𝑥𝑖) 
−𝜆 ∫

𝑥𝑖

𝑎
𝑘(𝑥𝑖 , 𝑡)𝑆𝑁(𝑡)𝑑𝑡,           1 ≤ 𝑖 ≤ 𝑁.               (2.7) 

Solving FIEs and VIEs using GM 

 Eq.(2.1) can be written as  

𝐸(𝑥, 𝑐1, 𝑐2, … , 𝑐𝑁) = 𝜇𝑆𝑁(𝑥) − 𝑓(𝑥) 

                   −𝜆 ∫
𝑏

𝑎
𝑘(𝑥, 𝑡)𝑆𝑁(𝑡)𝑑𝑡.             (2.8) 

From GM, the error is orthogonal to 𝑁-linearly independent 

functions 𝜒1(𝑥), 𝜒2(𝑥) , 𝜒3(𝑥), . . . , 𝜒𝑁(𝑥)  on the interval 

[𝑎, 𝑏]. So, we have  

 ∫
𝑏

𝑎
𝜒𝑗(𝑦)𝐸(𝑦, 𝑐1, 𝑐2, . . . , 𝑐𝑁)𝑑𝑦 = 0.             (2.9) 

Substation from Eq.(2.3), Eq.(2.8) and Eq.(2.9) yield  

∫
𝑏

𝑎

𝜒𝑗(𝑦) [𝜇 ∑

𝑁

𝑖=1

𝑐𝑖𝜓𝑖(𝑦) − 𝜆 ∫
𝑏

𝑎

𝑘(𝑦, 𝑡) ∑

𝑁

𝑖=1

𝑐𝑖𝜓𝑖(𝑡)𝑑𝑡] 𝑑𝑦 

 = ∫
𝑏

𝑎
𝜒𝑗(𝑦)𝑓(𝑦)𝑑𝑦, 1 ≤ 𝑗 ≤ 𝑁.            (2.10) 

For the VIE of the second kind, Eq.(2.6) yields  

 𝐸(𝑥, 𝑐1, 𝑐2, … , 𝑐𝑁) = 𝜇𝑆𝑁(𝑥) − 𝑓(𝑥) 

                                −𝜆 ∫
𝑥

0
𝑘(𝑥, 𝑡)𝑆𝑁(𝑡)𝑑𝑡.            (2.11) 

 Using GM, we get  

∫
𝑋

𝑎

𝜒𝑗(𝑦) [𝜇𝑆𝑁(𝑦) − 𝜆 ∫
𝑥

𝑎

𝑘(𝑦, 𝑡)𝑆𝑁(𝑡)𝑑𝑡] 𝑑𝑦 

 
= ∫

𝑋

𝑎
𝜒𝑗(𝑦)𝑓(𝑦)𝑑𝑦,                          1 ≤ 𝑗 ≤ 𝑁.

 (2.12) 

From Eq.(2.3), Eq.(2.12) can be written in the form 

∫
𝑋

𝑎

𝜒𝑗(𝑦) [𝜇 ∑

𝑁

𝑖=1

𝑐𝑖𝜓𝑖(𝑦) − 𝜆 ∫
𝑥

𝑎

(𝑘(𝑦, 𝑡) ∑

𝑁

𝑖=1

𝑐𝑖𝜓𝑖(𝑡)) 𝑑𝑡] 𝑑𝑦 

= ∫
𝑋

𝑎
𝜒𝑗(𝑦)𝑓(𝑦)𝑑𝑦,       1 ≤ 𝑗 ≤ 𝑁.

                                
   (2.13) 

3. Stability of the error 

  Assume that the solution of FIE (2.1) is  

               𝜙(𝑥) = ∑∞
𝑖=0 𝜓𝑖(𝑥)                  (3.1) 

  

and   𝜙𝑁(𝑥) = ∑𝑁
𝑖=0 𝜓𝑖(𝑥)                      (3.2) 

 is the Appr. solution of Eq.(2.1), we have  

 𝜙𝑁(𝑥) =
1

𝜇
𝑓(𝑥) +

𝜆

𝜇
∫

𝑏

𝑎
𝑘(𝑥, 𝑡)𝜙𝑁(𝑡)𝑑𝑡.    (3.3) 

 Eq.(2.1) and Eq.(3.3) yield the error 𝐸(𝑥) s.t.  

𝐸(𝑥) = 𝜙(𝑥) − 𝜙𝑁(𝑥) =
𝜆

𝜇
∫

𝑏

𝑎
𝑘(𝑥, 𝑡)(𝜙(𝑡) − 𝜙𝑁(𝑡))𝑑𝑡. (3.4) 

 Eq.(3.4) becomes  

           𝐸(𝑥) =
𝜆

𝜇
∫

𝑏

𝑎
𝑘(𝑥, 𝑡)𝐸(𝑡)𝑑𝑡.           (3.5) 

 Eq.(3.5) represents IE of the error 𝐸(𝑥) with the same 

kernel of FIE (2.1).  

Theorem 3.1    

 If 𝑘(𝑥, 𝑡) is continuous in 𝑎 ≤ 𝑡 ≤ 𝑥 ≤ 𝑏  and satisfies 

|𝑘(𝑥, 𝑡)| ≤ 𝐴, then Eq.(3.5) has a unique continuous solution 

in 𝑎 ≤ 𝑥 ≤ 𝑏 under the condition  

|𝜆| <
|𝜇|

𝐴(𝑏 − 𝑎)
. 

Proof Now, we are going to prove the normality and 

continuity of Eq.(3.5) which can be written in the form of 

integral operator  

 𝑉𝐸 =
𝜆

𝜇
∫

𝑏

𝑎
𝑘(𝑥, 𝑡)𝐸(𝑡)𝑑𝑡.                      (3.6) 

 From the normality, we get 

 

 

∥ 𝑉𝐸 ∥ = ‖
𝜆

𝜇
∫

𝑏

𝑎
𝑘(𝑥, 𝑡)𝐸(𝑡)𝑑𝑡‖

≤ |
𝜆

𝜇
| ‖∫

𝑏

𝑎
|𝑘(𝑥, 𝑡)|𝐸(𝑡)𝑑𝑡‖

≤ |
𝜆

𝜇
|𝐴 ∥ 𝐸(𝑡) ∥ ‖∫

𝑏

𝑎
𝑑𝑡‖

≤ |
𝜆

𝜇
|𝐴(𝑏 − 𝑎) ∥ 𝐸(𝑡) ∥

≤ 𝜚 ∥ 𝐸 ∥ ,            𝜚 = |
𝜆

𝜇
|𝐴(𝑏 − 𝑎).

    (3.7) 

 Since 𝑉 is contracting operator, we obtain 𝜚 < 1. So, we 

get  

          |𝜆| <
|𝜇|

𝐴(𝑏−𝑎)
.                               (3.8) 

 Therefore, the integral operator 𝑉 has a normality. 

 Assume that the two functions 𝐸1(𝑥) and 𝐸2(𝑥) in the 

space 𝐿2[𝑎, 𝑏] satisfy Eq.(3.6), then we have  

𝑉𝐸1
=

𝜆

𝜇
∫

𝑏

𝑎

𝑘(𝑥, 𝑡)𝐸1(𝑡)𝑑𝑡  and 

           𝑉𝐸2
=

𝜆

𝜇
∫

𝑏

𝑎
𝑘(𝑥, 𝑡)𝐸2(𝑡)𝑑𝑡.             (3.9) 

 So, we get  

 𝑉𝐸2
− 𝑉𝐸1

=
𝜆

𝜇
∫

𝑏

𝑎
𝑘(𝑥, 𝑡)(𝐸2(𝑡) − 𝐸1(𝑡))𝑑𝑡.   (3.10) 

From the properties of the norm of 𝐿2[𝑎, 𝑏], we obtain  

 
∥ 𝑉𝐸2

− 𝑉𝐸1
∥ = ‖

𝜆

𝜇
∫

𝑏

𝑎
𝑘(𝑥, 𝑡)(𝐸2(𝑡) − 𝐸1(𝑡))𝑑𝑡‖

             ≤ |
𝜆

𝜇
|𝐴(𝑏 − 𝑎)‖𝐸2(𝑡) − 𝐸1(𝑡))‖. (3.11) 

 Hence, we have   

 ∥ 𝑉𝐸2
− 𝑉𝐸1

∥≤ 𝜚‖𝐸2 − 𝐸1‖,    𝜚 < 1   (3.12) 

  

 with      |𝜆| <
|𝜇|

𝐴(𝑏−𝑎)
.                     (3.13) 

  The inequality (3.12) leads to the continuity of the 

integral operator 𝑉. Hence, 𝑉 is contraction operator in the 

space 𝐿2[𝑎, 𝑏], so Banach’s fixed point theorem yields that 𝑉 

has a unique fixed point which means that Eq.(3.5) has a 

unique solution.   

 Similarly, for VIE of the second kind, we obtain  

 𝐸(𝑥) =
𝜆

𝜇
∫

𝑥

𝑎
𝑘(𝑥, 𝑦)𝐸(𝑦)𝑑𝑦,            (3.14) 

 Eq.(3.14) represents IE of the error 𝐸(𝑥) with the same 

kernel of VIE (2.5).  

Theorem 3.2    

 If 𝑘(𝑥, 𝑡) ∈ 𝐶[𝑎, 𝑋]  and is continuous ∀𝑥, 𝑡 ∈ [𝑎, 𝑋] 
satisfying |𝑘(𝑥, 𝑡)| ≤ 𝐴 , then Eq.(3.14) has a unique 

continuous solution under the condition  

|𝜆| <
|𝜇|

𝐴(𝑋 − 𝑎)
. 

Proof Now, we prove the normality and continuity of 

Eq.(3.14) which can be written in the form of integral operator  

 𝑊𝐸 =
𝜆

𝜇
∫

𝑥

𝑎
𝑘(𝑥, 𝑡)𝐸(𝑡)𝑑𝑡.                     (3.15) 

 From the normality, we get  
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∥ 𝑊𝐸 ∥ = ‖
𝜆

𝜇
∫

𝑥

𝑎
𝑘(𝑥, 𝑡)𝐸(𝑡)𝑑𝑡‖

≤ |
𝜆

𝜇
|‖∫

𝑥

𝑎
|𝑘(𝑥, 𝑡)|𝐸(𝑡)𝑑𝑡‖

≤ |
𝜆

𝜇
|𝐴 ∥ 𝐸(𝑡) ∥ ‖∫

𝑥

𝑎
𝑑𝑡‖

≤ |
𝜆

𝜇
|𝐴(𝑋 − 𝑎) ∥ 𝐸(𝑡) ∥

≤ 𝜂 ∥ 𝐸 ∥ ,            𝜂 = |
𝜆

𝜇
|𝐴(𝑋 − 𝑎).

(3.16) 

 Since 𝑊  is contracting operator, we obtain 𝜂 < 1. 

So, we get  

                  |𝜆| <
|𝜇|

𝐴(𝑋−𝑎)
.                     (3.17) 

 Therefore, the integral operator 𝑊 has a normality.  

 Assume that the two functions 𝐸1(𝑥) and 𝐸2(𝑥) in the 

space 𝐶[𝑎, 𝑋] satisfy Eq.(3.15), then we have  

𝑊𝐸1
=

𝜆

𝜇
∫

𝑥

𝑎

𝑘(𝑥, 𝑡)𝐸1(𝑡)𝑑𝑡 

and    𝑊𝐸2
=

𝜆

𝜇
∫

𝑥

𝑎
𝑘(𝑥, 𝑡)𝐸2(𝑡)𝑑𝑡.   (3.18) 

 So, we get  

 𝑊𝐸2
− 𝑊𝐸1

=
𝜆

𝜇
∫

𝑥

𝑎
𝑘(𝑥, 𝑡)𝐸2(𝑡) − 𝐸1(𝑡))𝑑𝑡.  (3.19) 

 From the properties of the norm, we obtain  
 

∥ 𝑊𝐸2
− 𝑊𝐸1

∥= ‖
𝜆

𝜇
∫

𝑥

𝑎
𝑘(𝑥, 𝑡)(𝐸2(𝑡) − 𝐸1(𝑡))𝑑𝑡‖

≤ |
𝜆

𝜇
|𝐴(𝑋 − 𝑎)‖𝐸2(𝑡) − 𝐸1(𝑡))‖.  (3.20) 

 So, we get  
 ∥ 𝑊𝐸2

− 𝑊𝐸1
∥≤ 𝜂‖𝐸2 − 𝐸1‖,    𝜂 < 1  (3.21) 

 with            |𝜆| <
|𝜇|

𝐴(𝑋−𝑎)
.             (3.22) 

The inequality (3.21) leads to the continuity of the 
integral operator 𝑊 . 𝑊  is contraction operator in the 
space 𝐶[𝑎, 𝑋] so, Banach’s fixed point theorem yields that 
𝑊  has a unique fixed point which means that Eq.(3.14) 
has a unique solution. 
4. Numerical Results and Discussion 

many physical problems studies lead to IE like 
"Transverse oscillations of a bar" which can be convert to 
Fredholm or Volterra IE of the second kind depending to 
the conditions of the problems see [Tricomi. 1985 and 
Rahman 2007]. Furthermore, the study of "Electric 
circuits" can be reduced to FIE see [Stewart, 2015]. So, we 
are going to focus on studying the behaviour of the error of 
IEs and compare between the presented methods. 
Example 4.1 Consider the following FIE of the second kind  
𝜙(𝑥) = 𝑓(𝑥) + ∫

𝜋

0
2𝑥2𝑡𝜙(𝑡)𝑑𝑡,                𝜙(𝑥) = sin(𝑥).   (4.1) 

Applying CM and GM, choosing the expansion of Appr. 

solution as a sum of sinusoidal functions  

𝑆𝑁(𝑥) = ∑

𝑁

𝑘=1

𝑐𝑘 (|sin (
𝑘𝜋

2
)| cos(

𝑘 + 1

2
𝑥)

+ |sin (
𝑘 + 1

2
𝜋)| sin(

𝑘

2
𝑥)). 

  Firstly, it can be observed that using CM the error is 

increasing through increasing 𝑁 as shown in Fig (4.1). When 

we take the Appr. solution in the form of five terms "𝑁 = 5", 

the Max. value error value is (7.73579 × 10−16) at 𝑥 = 𝜋. 

Also, in Fig (4.3), the error closed to zero except at 𝑁 = 9 it 

is increasing to touch the highest value (1.18484 × 10−14) at 

𝑥 = 𝜋. Fig (4.5) shows that the highest value of the error is 

(7.53942 × 10−11) at 𝑥 = 𝜋 with 𝑁 = 17. Fig (4.7) shows 

that the behaviour of the error is stable but at 𝑁 = 21 the error 

reaches to peak at 𝑥 = 𝜋 with value (4.55044 × 10−9).    
   Secondly, using GM shows that the error is increasing 

due to increasing 𝑁, see Fig (4.2), Fig (4.4) and Fig (4.6). The 

Max. error in Fig.(4.2) is (1.11022 × 10−16) at 𝑥 =
3𝜋

4
 with 

𝑁 = 5 , in Fig (4.4) is (3.8256,9 × 10−15)  at 𝑥 = 0  with 

𝑁 = 10  and in Fig (4.6) is (6.63085 × 10−11)  at 𝑥 = 0 

with 𝑁 = 10. In Fig (4.8) the behaviour of the error is stable 

but at 𝑁 = 82, the error reaches to the peak at 𝑥 = 𝜋 with 

value (1.8135 × 10−4). 

 

 

 

 

 

 

 

 

 

Fig (4.1): The behavior of the error at different values 
of N = 3 : 5 using CM.  

 

 

 

 

 

 

 

 

 

Fig (4.2): The behavior of the error at 
different values of N = 3:5 using GM. 
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Fig (4.3): The behavior of the error at different 
values of N = 6 : 10 using CM.            

Fig (4.4): The behavior of the error at different 
values of N = 6 : 10 using GM. 

  

Fig (4.5): The behavior of the error at different 
values of N = 11 : 19 using CM.  

Fig (4.6): The behavior of the error at different 
values of N = 11 : 19 using GM. 

  

Fig (4.7): The behavior of the error at different 
values of 𝑁 = 20: 100 using CM     

Fig (4. 8): The behavior of the error at different 
values of 𝑁 = 20: 100 using GM 
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Table (1): A comparison between Max. and Min. errors using CM, GM in example 
(4.1). 
 

xi 

Max. error Min. error 

CM GM CM GM 
Emax N Emax N Emin N Emin N 

0 7.99E-15 93 0.00014 82 0 91 9.62E-22 3 
π 
4 2.84E-10 21 8.75E-06 82 0 3,10,11,23 0 3, 4, 8 
π 
2 1.14E-09 21 9.95E-06 82 0 3,4,6,11,14,16,18 0 3,4,5,6 

3π 
4 2.56E-09 21 8.11E-06 82 0 3,7,8,12 0 3,4,6 

π 4.55E-09 21 0.000181 82 1.35E-18 8 9.62E-22 3 

 

 

 

 
 
Example 4.2 Consider the following FIE of the second kind  

𝜙(𝑥) = 𝑓(𝑥) + ∫
1

0
(3𝑡 + 𝑥)𝜙(𝑡)𝑑𝑡, 𝜙(𝑥) =

1−𝑒−𝑥

1+𝑒𝑥 . (4.2) 

  Applying CM and GM in this example, choosing the 

expansion of Appr. solution as a sum of exponential functions 

s.t.  

 𝑆𝑁(𝑥) = ∑𝑁
𝑘=1 𝑐𝑘𝑒(𝑘−1)𝑥 ,        𝑁 = 3,4, . . . ,100. 

  Firstly, using CM, as a general trend, the error is 

decreasing due to increasing 𝑁  and the Max. error value 

(2.79 × 10−2) is obtained at 𝑥 = 0.25 with 𝑁 = 3. Also, 

the Min. value (1.90184 × 10−12)  is obtained at 𝑥 = 1 

with 𝑁 = 44.  

Secondly, using GM a glance at the graphs revels that 

owing to increasing 𝑁 the error is dramatically decreasing as 

show in Fig (4.10) and Fig (4.12) but in Fig (4.14) and Fig 

(4.16), it changes sporadically hitting the peak (2.55 ×
10−4) at 𝑥 = 1 with 𝑁 = 79. 

 

Table (3): A comparison between Max. and Min. errors 

using CM, GM in example (4.2). 

 
xi 

Max. error Min. error 

C

M 

G

M 

C

M 

G

M 
Emax N Emax N Emin N Emin N 

0 0.00633 3 0.023654 3 6.77E-12 66 4.77E-09 26 

0.25 0.02791 3 0.008722 3 1.3E-11 66 2.69E-10 50 

0.5 0.01134 3 0.002812 3 3.04E-12 66 3.85E-09 80 

0.75 0.00889 3 0.008948 3 1.27E-11 66 2.12E-08 21 

1 0.01636 3 0.018479 3 1.9E-12 44 1.43E-08 43 

 

 

   

  

  

Table (2): A comparison between error obtained 
by CM and GM at five points for different N 
functions in example (4.1). 

xi  N Exact CMError GMError 

 

 

0 

 3  

 

0 

1.42042E-17 9.62322E-22 

 4 2.66782E-17 2.03423E-19 

 5 2.78443E-16 6.60252E-17 

 . . . 

 100 6.41848E-16 2.94777E-08 

 

 

π 
4 

 3  

 

0.707106781 

0 0 

 4 1.11022E-16 0 

 5 2.22045E-16 1.11022E-16 

 . . . 

 100 1.23568E-13 1.43646E-09 

 

 

π 
2 

 3  

 

1 

0 0 

 4 0 0 

 5 2.22045E-16 0 

 . . . 

 100 4.96048E-13 8.19014E-10 

 

 

3π 
4 

 3  

 

0.707106781 

0 0 

 4 1.11022E-16 0 

 5 4.44089E-16 1.11022E-16 

 . . . 

 100 1.11844E-12 2.82912E-09 

 

 

π 

 3  

 

0 

1.42042E-17 9.62322E-22 5 

 4 2.66782E-17 2.03423E-19 

 5 7.73579E-16 6.5776E-17 

 . . . 

 100 1.98807E-12 4.35455E-08 
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Fig. 4.9: The behavior of the error at different 
values of N = 3 : 5 using CM. 

Fig. 4.10: The behavior of the error at different 
values of N = 3 : 5 using GM.  

  
Fig (4.11): The behavior of the error at 
different values of N = 6 : 10 using CM. 

Fig (4.12): The behavior of the error at 
different values of N = 6 : 10 using GM. 

  
Fig (4.13): The behavior of the error at 
different values of N = 11 : 19 using CM. 

Fig (4.14): The behavior of the error at 
different values of N = 11 : 19 using GM. 
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xi N Exact CMError GMError 

 

 

0 

3  

 

0 

0.006321 0.023654 

4 0.003342 0.007343 

5 0.000775 0.002119 

. . . 

100 6.95E-09 5.23E-05 

 

 

0.25 

3  

 

0.096846 

0.027914 0.008722 

4 0.00128 0.002829 

5 0.000996 0.000354 

. . . 

100 6.76E-09 3.56E-06 

 

 

0.5 

3  

 

0.148551 

0.01134 0.002812 

4 0.008137 0.002108 

5 0.001217 0.000515 

. . . 

100 7.32E-09 4.18E-06 

 

 

0.75 

3  

 

0.169276 

0.008868 0.008948 

4 0.000949 0.000644 

5 0.001438 0.00058 

. . . 

100 1.74E-08 2.05E-06 

 

 

1 

3  

 

0.170003 

0.016358 0.018479 

4 0.005813 0.006258 

5 0.001659 0.001879 

. . . 

100 1.61E-08 2.97E-06 

 
 

 

Fig (4.15): The behavior of the error at 
different values of N = 20 : 100 using CM. 

Fig (4.16): The behavior of the error at 
different values of N = 20 : 100 using GM. 

Table (4): A comparison between error obtained by CM and GM at five points for different N functions 
in example (4.2). 
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Example 4.3 Consider the following VIE of the second kind  

𝜙(𝑥) = 𝑓(𝑥) + ∫
𝑥

0
2𝑡𝑥3𝜙(𝑡)𝑑𝑡, 𝜙(𝑥) = ln(𝑥2 + 1). (4.3) 

Applying CM and GM, we choose the expansion of 
Appr. solution as a sum of polynomial functions  

 𝑆𝑁(𝑥) = ∑𝑁
𝑘=1 𝑐𝑘𝑥𝑘−1,                  𝑁 = 3,4, . . . ,100. 

 Firstly, in this example as an overall trend when we 
use CM the error is decreasing due to increasing 𝑁. In Fig 
(4.17) the error decreases dramatically by increasing 𝑁 
with Max. error value (2.34 × 10−2)  at 𝑥 = 0.8  and 

𝑁 = 3. Also, when 𝑁  increases from 6: 100, the error 
changes sporadically with Max. value (2.30483 × 10−6) 
at 𝑥 = 0.2 and 𝑁 = 7.   

Secondly, applying GM the error is decreasing owing 
to increasing 𝑁  and the peak value (7.91 × 10−3)  is 
obtained at 𝑥 = 0.8  with 𝑁 = 3  as shown in Fig 
(4.18). Also, for 𝑁 ≥ 11  the behaviour of the error is 
erratic with Max. value (1.87209 × 10−06)  at 𝑥 = 0 
and 𝑁 = 89 as shown in Fig (4.24).    

  

Fig (4.17): The behavior of the error at 
different values of N = 3 : 5 using CM. 

Fig (4.18): The behavior of the error at different 
values of N = 3 : 5 using GM. 

  

Fig (4.19): The behavior of the error at 
different values of N = 6 : 10 using CM. 

Fig (4.20): The behavior of the error at different 
values of N = 6 : 10 using GM. 

  
Fig (4.21): The behavior of the error at 
different values of N = 11 : 19 using CM. 

Fig (4.22): The behavior of the error at different 
values of N = 11 : 19 using GM. 
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Fig (4.23): The behavior of the error at different 
values of N = 20 : 100 using CM. 

Fig (4.24): The behavior of the error at different 
values of N = 20 : 100 using GM. 

 

 
5. Conclusion 

  A numerical treatment for FIEs and VIEs of the second 

kind using CM and GM is presented. Also, the behaviour of 

the errors in each case is studied with a comparison between 

the presented methods. Under certain conditions, Banach’s 

fixed point theorem is used to prove the existence and 

uniqueness for the equation of the error which has the same 

kernel of the origin IE. Results are represented in groups of 

figures and tables for determining the Max. and Min. error in 

each case.  

From Table (1); Firstly, applying CM in example (4.1), the 

least Max. error value is (7.99 × 10−15) at 𝑥 = 0 with 𝑁 =
93 and the upper Max. error value is (4.55 × 10−9) at 𝑥 =
𝜋 with 𝑁 = 21. Moreover, the least Min. error value is (0) 

at 
𝜋

4
,

𝜋

2
,

3𝜋

4
 with 𝑁 = 3  and the upper Min. error value is 

(1.35 × 10−15) at 𝑥 = 𝜋 with 𝑁 = 8. Secondly, applying  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GM in example (4.1), the least Max. error value is 

(8.11 × 10−6) at 𝑥 =
3𝜋

4
 with 𝑁 = 82 and the upper Max. 

error value is (1.81 × 10−4) at 𝑥 = 𝜋 with 𝑁 = 82. 

Table (6): A comparison between error 
obtained by CM and GM at five points for 
different N functions in example (4.3). 

xi N Exact CMError GMError 

 

 

0 

3  

 

0 

0 0.021263 

4 0 0.000158 

5 0 0.000784 

. . . 

100 0 1.15E-08 

 

 

0.2 

3  

 

0.039221 

0.021801 0.007905 

4 7.56E-05 0.000175 

5 0.000274 8.15E-05 

. . . 

100 8.26E-16 6.59E-10 

 

 

0.4 

3  

 

0.14842 

0.011498 0.006177 

4 0.00016 5.05E-05 

5 0.000232 0.000196 

. . . 

100 2.91E-15 2.96E-09 

 

 

0.6 

3  

 

0.307485 

0.010797 0.006333 

4 0.000328 0.000369 

5 0.000202 0.000217 

. . . 

100 7.77E-16 1.24E-08 

 

 

0.8 

3  

 

0.494696 

0.023365 0.007908 

4 0.00095 0.00037 

5 0.000156 0.000117 

. . . 

100 3.89E-16 1.44E-08 

Table (5): A comparison between Max. and Min. errors using 

CM, GM in example (4.3). 

 
xi 

Max. error Min. error 

CM GM CM GM 
Emax N Emax N Emin N Emin N 

0 0 3-100 0.021263 3 0 3-100 3.59E-10 68 

0.2 0.021801 3 0.007905 3 0 55 2.17E-11 73 

0.4 0.011498 3 0.006177 3 2.78E-17 22,35, 

48 

8.88E-11 19 

0.6 0.010797 3 0.006333 3 0 31,35, 

41,70 

6.26E-11 23 

0.8 0.023365 3 0.007908 3 0 27,36, 

44,56, 

57,85 

2.09E-10 77 
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In addition, the least Min. error value is (9.62 × 10−22) at 

𝑥 = 0, 𝜋 with 𝑁 = 3 and the upper Min. value of errors is 

(0) at 𝑥 =
𝜋

4
,

𝜋

2
,

3𝜋

4
 and 𝑁 = 3,4.  

From Table (3); Firstly, applying CM in example (4.2), the 

least Max. error value is (6.32 × 10−3) at 𝑥 = 0 with 𝑁 =
3 and the upper Max. error value is (2.79 × 10−2) at 𝑥 =
0.25  with 𝑁 = 3 . Moreover, the least Min. error value is 

(1.9 × 10−12)  at 𝑥 = 1  with 𝑁 = 44  and the upper Min. 

error value is (1.3 × 10−11)  at 𝑥 = 0.25  with 𝑁 = 66 . 

Secondly, applying GM in example (4.2), the least Max. error 

value is (2.81 × 10−3)  at 𝑥 = 0.5  with 𝑁 = 3  and the 

upper Max. error value is (2.3 × 10−2) at 𝑥 = 0 with 𝑁 =
3. Moreover, the least Min. value of errors is (2.69 × 10−10) 

at 𝑥 = 0.25 with 𝑁 = 50 and the upper Min. error value is 

(2.12 × 10−8) at 𝑥 = 0.75 with 𝑁 = 21.   

 From Table (5); Firstly, applying CM in example (4.3), 

the least Max. error value is (1.07 × 10−2) at 𝑥 = 0.6 with 

𝑁 = 3 and the upper Max. error value is (2.33 × 10−2) at 

𝑥 = 0.8 with 𝑁 = 3. Moreover, the least Min. value of errors 

is 0  at 𝑥 = 0,0.2  with 𝑁 = 55  and the upper Min. error 

value is (2.78 × 10−17)  at 𝑥 = 0.4  with 𝑁 = 22,35,48 . 

Secondly, applying GM in example (4.3), the least Max. error 

value is (6.177 × 10−3)  at 𝑥 = 0.4  with 𝑁 = 3  and the 

upper Max. error value is (2.1263 × 10−2) at 𝑥 = 0 with 

𝑁 = 3 . In addition, the least Min. value of errors is 

(2.17 × 10−11)  at 𝑥 = 0.2  with 𝑁 = 73  and the upper 

Min. error value is (3.59 × 10−10) at 𝑥 = 0 with 𝑁 = 68. 

So, we can conclude that:   

    1.  In sinusoidal function, increasing 𝑁 , the error is 

increasing as shown in example (4.1) but in polynomial and 

exponential functions the error decreases due to increasing 𝑁. 

as shown in examples (4.2), (4.3).  

    2.  For large 𝑁 , CM is more effective than GM in 

polynomial and exponential functions.  
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