
Benha Journal of Applied Sciences (BJAS) print: ISSN 2356–9751

Vol. (7) Issue (4) (2022), (133-142) online: ISSN 2356–976x

http://bjas.journals.ekb.eg

Arabic Semantic-Based Textual Similarity
Shimaa Ismail

 1
, AbdelWahab Alsammak

2
 and Tarek Elshishtawy

1

1
Faculty of Computers and Artificial Intelligence, Benha Univ., Benha, Egypt

2
Faculty of Engineering Shoubra, Benha Univ., Benha, Egypt

E-mail: Shimaa.mustafa@fci.bu.edu.eg

Abstract
Textual similarity is one of the most important aspects of information retrieval. This paper proposes several techniques of

semantic textual similarity as well as the factors that influence them. Two-hybrid approaches for measuring the degree of

similarity between two Arabic snipped texts are presented. The first proposed approach combined the word-based and vector-

based similarity methods to construct semantic word spaces for each word of the input text. These words are represented in

their lemma forms to capture all semantically related words. In this approach, the semantic word spaces are used to find the

best matching between the input text words, and hence, the degree of similarity between the two snipped texts is computed.

The second proposed approach combined semantic and syntactic based approaches. The basic Levenshtein concept

represents the main structure for this approach. It has been modified to measure the edit cost at the token level not at the

character level. In addition, the semantic word spaces are added to this approach to include the semantic features to the

syntactic features. Some techniques are embedded to overcome the syntactic approach problems such as the word sequence.

Pearson correlation coefficient is used to measure the degree of correctness of the two proposed approaches as compared to

two benchmark datasets. The experiments achieved 0.7212 and 0.7589 for the two proposed approaches on two different

datasets.

Keywords: Arabic Text Similarity, Semantic Similarity, Lexical Similarity, Word Embedding, Permutation Feature,

Negation Effect.

1. Introduction

STS (Semantic Textual Similarity) metrics have been

a major topic in a variety of studies and applications.

Information retrieval, machine translation, text

summarization, sentiment analysis, question generating

and answering, automatic essay scoring, automatic short

answer grading, and other activities all rely on them [1].

There are several barriers in determining the

semantic similarity or relationship between two snipped

Arabic texts, including morphological inflections and

orthographic confusion related to optional diacritization.

As a result, there are more homographs than in English,

which adds to the confusion [2]. The Arabic word "ذهب"

for example, maybe the verb "Went" or the noun "Gold"

with various diacritics. It is possible to discern between

the two meanings based on the part of speech tagging

and the context of the word. As a result, it is important to

do this work with a conventional morphological tool. In

this research, the StanfordNLP library is used as a

morphological tool to determine the Part of Speech

(POS) tagging for words. In addition, the lemmatization

approach was employed in our study to avoid the

diacritization difficulty and its impact by using the

lemma form of the word. The inflected word form is

transformed into its dictionary lemma look-up form

through lemmatization [3]. This lemma form is the

shortest that captures all the word's semantic

characteristics.

There are two different types of sentence similarity:

lexical similarity and semantic similarity. Lexical

similarity looks at a sentence as a series of characters

and determines how similar these characters are. The

semantic similarity, on the other hand, is determined by

the meaning of the phrases. It is necessary to determine

the degree of relatedness between sentences to quantify

semantic similarity [4].

The Levenshtein approach is one of the approaches

that measure the similarity of texts lexically. The

Levenshtein distance is a statistic for calculating how

many edit operations are necessary to convert one string

to another [5]. The distance between two words is

defined as the number of single-character changes (i.e.,

insertions, deletions, or replacements) necessary to

change one word into the other in its original form. The

edit distance is expanded in this study to detect distances

between two sentences given in words rather than

characters. In addition, semantic features are embedded

to change the edit cost between the input words.

Semantic word spaces are generated from one of the

word embedding models that represent the words in a

vector space. This vector space defined the meaning of

words and the relation between them. There are two

algorithms used to extract these semantic word spaces in

this research. In the two proposed approaches, the

semantic word spaces are used in two different manners.

In this paper, two hybrid approaches are proposed to

enhance the overall calculations of the similarities

between two texts. An interlaced approach that combines

word-based and vector-based approaches was proposed.

A modified strategy that combines both syntax and

semantic techniques also presented.

http://bjas.journals.ekb.eg/

134 Arabic Semantic-Based Textual Similarity

Benha Journal Of Applied Sciences, Vol. (7) Issue (4) (2022(

The rest of the paper is organized as follows. Section

2 represents the related work of the semantic similarity

approaches. Section 3 explains the approach

methodology. In section 4, the evaluations of the

experimental results are described. Finally, the

conclusion of our approach is presented in section 5.

2. Related Work

Arabic snipped texts can be classified according to

the adopted methodology as follows:

One of the most used strategies for evaluating

semantic similarity is deep learning with feature-

engineered models. Tian et al. [6] used characteristics

such as n-gram overlap, edit distance, and longest

common prefix/ suffix/ substring to train deep learning

algorithms. They were able to reach a PCC of 0.7440.

On the aspects of alignment similarity and string

similarity measurements, Henderson et al. [7] employed

the same method with various algorithms, such as

Recurrent Neural Networks (RNN) and Recurrent

Convolutional Neural Networks (RCNN). For the same

dataset, their PCC is 0.7304.

For the same dataset utilized, the semantic

information space (SIS) is a technique that produced a

high Pearson correlation coefficient. The non-

overlapping Information Content (IC) computation is

obtained using this method, which is based on the

semantic hierarchical taxonomy in WordNet. This

method was employed by Wu et al [8] in three studies.

As they used the IC which is based on the word

frequencies from WordNet and the British National

Corpus. They also collaborate the IDF weighting system

using the IC with cosine similarity. The highest Pearson

correlation coefficient is presented in this competition by

0.7543.

BableNet is a huge, multilingual semantic network

with broad coverage that gathered its data from Wordnet

and Wikipedia [9]. The multilingual word-sense aligner

proposed by Hassan et al., [10] relies heavily on the

BableNet network. According to the Bable synsets, they

built an aligner that aligns each word in one phrase to

another word in the other. In many languages, these

synsets reflect the word's meaning, named entity, and

synonyms. For the used Arabic dataset, PCC is 0.7158.

Word embedding is a common method for various

text applications and NLP activities. The distributed

representation of words in a vector space is referred to as

word embedding. Traditional NLP techniques miss

syntactic (structure) and semantic (meaning) links across

collections of words. As a result, using word vectors to

represent words has its advantages. The word vectors are

multidimensional continuous floating-point values in

which semantically comparable words are transferred to

geometrically close regions. Each point in the word

vector represents a dimension of the word's meaning,

i.e., words used in comparable contexts are mapped to a

proximal vector space. Different techniques represent the

words in vector spaces such as Skipgram skip-G,

Continuous Bag of Words CBOW, and the co-

occurrence frequency. The terms "flower" and "tree," for

example, are semantically related since they both refer to

plants and are used in the same context [11]. FastText is

one of these word embedding models that presented

word representation for the Arabic language. FastText is

an unsupervised learning technique that generates vector

representations for words in 294 languages [12]. It

supports both CBOW and skip-G models.

Nagoudi et al. [13] used a word embedding model

presented by Zahran et al. [14] based on CBOW, Skip-

G, and GloVe approaches to determine the semantic

similarity of Arabic sentences. Additionally, they

included two weighing functions: IDF weighting and

POS tagging. They achieved a PCC of 0.7463 ranked the

first for applying an approach with the native language

and the second among all participants.

Alian et al., [15] proposed a method that combined

lexical, semantic and syntactic-semantic features with

machine learning techniques like linear regression and

support vector machine regression. They applied the

Levenshtein method and one of the word embedding

models to represent words in a vector space. They

evaluated their approach on three different datasets. For

the STS-MSRvid of the SemEval competition dataset,

they achieved a PCC of 0.743.

The word-based similarity category treats the phrase

as a collection of words; hence it is based on the

similarity between terms. There are several approaches

for determining phrase similarity in this area, including

maximum similarity, similarity matrix, employing

similar and dissimilar components, and word meaning

disambiguation [4]. In addition, several of these

strategies are integrated. First, the maximum similarity

of each word in the first sentence and each word in the

second sentence is determined using the Max similarity

approach. The average similarity is then determined

[16]. The similarity matrix method generates a matrix

containing the results of calculating the similarity

between each word in each sentence and the words in the

other sentence [17]. Wang et al., [18] describe the use of

similar and dissimilar parts to represent words using

word embedding. They then used cosine similarity to

create a similarity matrix. Furthermore, a semantic

matching function was used to create a semantic

matching vector for each word. They break down the

resulting match vectors to discover which portions of

each vector are similar and which are distinct. Finally,

the similarity is calculated using these vectors. In [19],

they utilized Wordnet synonyms to extend the words of

the original phrases, then generated a vector

representation for these words in addition to the vectors

Shimaa Ismail, AbdelWahab Alsammak and Tarek Elshishtawy 135

Benha Journal Of Applied Sciences, Vol. (7) Issue (4) (2022(

of the set of terms in each sentence. Finally, the cosine

similarity of the two vectors is used to calculate the

similarity.

3. Methodology

In this research, we presented two-hybrid approaches

for two different semantic techniques.

3.1 The First Proposed Approach

In the first approach, we present a hybrid

methodology that combines two semantic similarity

approaches: word-based and vector-based methods, to

quantify the semantic similarity between two snipped

Arabic texts. The vector space of each word is first

retrieved in lemma form using the fastText vector model.

The StanfordNLP library was used to generate their

lemma form. To analyze natural language, the

StanfordNLP package is employed. It turns a string of

human language text into lists of sentences and words,

generates basic forms of those words, parts of speech,

and morphological aspects, and provides a syntactic

structural dependency parse that is parallel across over

70 languages [20]. It is utilized for tokenization and

lemmatization in both the fastText vector model and the

input text in our technique. In the following part, we'll

go through how to do that. Second, utilizing the vector

word-space of sentences, a word-matching matrix is

created. Finally, the degree of similarity between

sentences is calculated.

Fig. (1) illustrates the suggested technique, which is

divided into three stages:

1) Vector-Based Similarity,

2) Word-Based Similarity,

3) Similarity Measures.

3.1.1 Vector-Based Similarity

FastText Models are available and readable for the

Arabic language. FastText models trained using CBOW

with position-weights, in dimension 300, with character

n-grams of length 5, a window of size 5, and 10

negatives [21]. Arabic fastText corpus contains more

than 356 thousand words. These words are totally

different represented in their surface form. A screenshot

from this dataset is shown in fig. (2).

Fig. (1) The Proposed approach Overview.

Fig. (2) A screenshot from the fastText Arabic Model dataset

136 Arabic Semantic-Based Textual Similarity

Benha Journal Of Applied Sciences, Vol. (7) Issue (4) (2022(

Many studies employed the vector space model's surface

form to derive the semantic similarity between words

that did not include additional semantically related

terms. But in this research, a lemmatization technique is

used to improve the search word space for the fastText

model words. The lemmatization is applied for the input

text and the fastText vector model and stated as a

mapped fastText model. Some other preprocessing tools

are applied for the text such as noise removal, word

normalization, eliminating stopwords.

There are two techniques are used to extract the

semantic word spaces for each word of the input words:

using the closest words algorithm or a ready-made

function built in the fastText module in python language.

3.1.1.1 Using the closest words algorithm

To extract the closest words for each word in the

sentences, vectors are employed to extract semantic

similarity using a word embedding or word

representation. For related or near-synonymous words,

these vectors shared the same semantic properties. The

suggested method extracts comparable words from the

mapped fastText model using the preprocessed and

lemma form of input words. There are numerous indices

in the mapped model for each word in the input text that

contains the same word but distinct vectors. Fig. (3)

showed the process of extracting the semantic word

space for a specific word.

The mapped vector model is used to extract the

closest words using Algorithm 1. Where np is the

NumPy library stands for Numerical Python.

Fig. (3) The process of extracting the semantic word space for a word using the closest words algorithm

Algorithm 1: Finding the closest words for a specific word

Input: The Word Vector, N

Output: Similar Words

1. difference = vector of all words – vector of a word

2. delta = np.sum(difference * difference)

3. i = np.argmin(delta)

4. similar word = word of index i

5. drop the index of this similar word

6. iterate the previous steps by N times

7. Return similar words

Fig. (4) The process of extracting the semantic word space for a word using the fastText library

Shimaa Ismail, AbdelWahab Alsammak and Tarek Elshishtawy 137

Benha Journal Of Applied Sciences, Vol. (7) Issue (4) (2022(

Iterating over the whole vectors of the mapped

fastText model to obtain the index of the most

comparable word can be used to find the closest word.

By repeating the loop N times with the same method, N

numbers of related terms are discovered. The word space

number for each word can be assigned, however,

according to the mapped fastText model, each word has

a distinct number of indexes. The main purpose is to

increase the word search space by collecting more

relevant comparable terms for a particular word. In this

approach, we extract 10 closest words for each index.

3.1.1.2 Using the fastText module

The language model of the fastText organization was

released as a Python module [22]. Similar words can be

retrieved using a built-in function named "get nearest

neighbors" in this package or module. Like the word

space for each word, this function returns the 10 closest

neighbors of the searched word in its surface form. The

process of extracting the semantic word space using the

fastText module is shown in Figure 4.

3.1.2 Word-based Similarity

In this stage, we tried to find the relatedness or the

association between words. From the semantic words

spaces, a common word matrix is built. This matrix is

constructed by the common words of each pair of words

by their semantic word spaces. From this matrix, a

matching matrix is generated by selecting the most

common words between each pair of words. The

matching matrix consists of the words of the first

sentence matched to some of the second sentence words

with the number of common words (NCW).

3.1.3 Similarity Measures

For two sentences s1 and s2 with a length of n and m

respectively, the similarity score is measured by

Equation 1. Where p is the length of the matching

matrix.

∑ ⁄

 (1)

The result value is a ratio from 0 to 1 scale. So, we

multiply the output by 5 to make the output ratio is from

0 to 5 scale. The zero value represents that the two

sentences are quite different, and the five value indicates

that the two sentences are typical.

3.2 The Second Proposed Approach

In the second approach, a modified approach is

presented to measure the similarity of two snipped

Arabic texts lexically and semantically based on the edit

distance approach. This proposed approach is hybrid in

the sense that both syntax and semantic features are used

to measure the similarity. Different knowledge resources

are employed such the semantic word spaces. Also, the

approach presents a solution to miss ordering of words

between given two sentences. The modified edit distance

approach is based on different weights (edit cost)

according to the state of the two words.

The proposed workflow for measuring the edit cost

between two words is shown in Fig (5).

Fig. (5) The workflow diagram of finding the edit cost of two words

138 Arabic Semantic-Based Textual Similarity

Benha Journal Of Applied Sciences, Vol. (7) Issue (4) (2022(

Algorithm 2: Finding the edit cost between two words

Input: Pair of words S1[i], S2[j]

Output: Edit cost

Let cost be the edit cost,

IF the word S1[i] = the word S2[j],

then, cost=0;

ELSE IF S1[i] is one of the semantic space words of S2[j] according to the fastText module,

 then, cost= 1- similarity score (SC);

ELSE IF S2[j] is one of the semantic space words of S1[i] according to the fastText module,

 then, cost = (1- SC);

ELSE IF there are common words bw the two semantic spaces obtained by the closest words algorithm,

 then, cost = 1- similarity ratio (SR);

SR = NCW/ Max (|WS1|,|WS2|),

Where NCW is the number of common words between WS1[i] and WS2[j],

Where WS1 is the length of the word space of word i in S1 that differ according to each word,

Where WS2 is the length of the word space of word j in S2 that differ according to each word,

ELSE, cost=1;

The frame algorithm for calculating the edit cost of

given two words in two sentences is presented in

Algorithm 2.

In this proposed approach, new features are

combined to provide accurate measures of the similarity

between two snipped Arabic texts. The following

summarizes the features and proposed modules of the

approach.

3.2.1 Token Lemma Level

The Levenshtein approach is one of the lexical

similarity strategies based on the edit distance metrics.

The cost of changing one string into another is calculated

using its methodology, which assigns a unity cost to all

edit operations. This cost is utilized to create a character

matrix between the two words, which then yields the edit

distance. The suggested method extends the Levenshtein

algorithm by computing 'edit distances' at the token level

rather than the character level as in the traditional

algorithm. The lemma versions of the tokens are

represented. In addition, the input text is pre-processed

using the mentioned pre-processing tools in the first

proposed approach.

3.2.2 Embedding Semantic Knowledge

The cost between each pair of words is calculated

using the semantic word spaces produced from the two

algorithms outlined in the first proposed approach. In

algorithm 2, the edit cost between each pair of words has

a different value according to their state. First, the

semantic word space obtained from the fastText module

is used. The ten nearest neighbors’ words obtained from

the fastText module have similarity scores (SC) for each

term. This score shows how closely the retrieved

comparable word is semantically connected to the

searched word. The edit cost between two words is

determined by (1-SC) if the first word is one of the

semantic space words of the second word and vice versa.

Otherwise, the semantic word spaces generated from

Algorithm 1 are used. The two semantic spaces' common

terms are considered as NCW. The SR is then

determined by dividing the NCW by the maximum

length of the two semantic spaces, which is differing

according to each word. The cost will be (1-SR).

Otherwise, the cost equals one.

For two sentences S1, S2 with length n, m words

respectively, a corresponding matrix CM is constructed

depending on the edit cost between each pair of words.

The value of CM[i+1][j+1] is as shown in Equation 2:

 {

 [][]

 [][]

 [][]

 (2)

Finally, the edit distance between the two sentences

is represented by the final value of CM[-1][-1]. The

similarity between the two sentences is measured by

Equation 3.

 (3)

3.2.3 Applying Word Permutation

The Levenshtein method is based on word order and

word syntactic dependencies. For example, the two

phrases “Every morning the sun shines in the sky” and

"The sun shines in the sky every morning” in Arabic

" سماء كل صباحتسطع الشمس في ال " and " كل صباح تسطع الشمس في

 have the same meaning and their similarity should "السماء

be 100 percent, however, when using the Levenshtein

technique, the similarity would be zero owing to

incorrect word order. As a result, a permutation

approach is employed to determine the optimal word

alignment between the two texts. A permutation is a

mathematical approach for determining the number of

alternative arrangements in a set when the order of the

arrangements is needed. One of the two phrases is

rearranged n! times, where n is the sentence's word

length. In our approach, we utilized this technique for

five words only to reduce the complexity of permutation

Shimaa Ismail, AbdelWahab Alsammak and Tarek Elshishtawy 139

Benha Journal Of Applied Sciences, Vol. (7) Issue (4) (2022(

operations. For each candidate sequence, the edit

distance is calculated. The candidate sequence with the

shortest edit distance is chosen as the one that most

accurately matches the alignment of the words in the two

sentences.

4. Experiments

4.1 Dataset Description

We utilized the dataset from the Semantic Evaluation

“SemEval” yearly competition to assess the performance

of our approach. This event is used for a variety of

languages and track issues. The semantic similarity

between texts is one of these tracks (word phrases,

sentences, paragraphs, or full documents). Furthermore,

the text might be in monolingual or multilingual formats.

2017 was the final year of the competition that used the

semantic similarity track.

Development Sets and Evaluation Sets are the two

datasets included in the released dataset. One of the

Development Sets for monolingual Arabic snipped texts

is the STS-MSRvid dataset
1
, which contains 368 pairs of

sentences. The Evaluation Sets
2
 are a collection of 250

sentence pairs with human judgment ratings that were

published as the Evaluation Gold Standard
3
. In the

output of these datasets, the Pearson Correlation

Coefficient (PCC) between each pair of sentences is

supplied in a one-column table. This coefficient runs

from -1 to 1, with a value of (-1) indicating that the

values of the two columns are completely different and a

value of (1) indicating that they are identical. This

coefficient is expressed in Equation 4.

∑ ̅ ̅

√∑ ̅
 √∑ ̅

 (4)

Where ̅ is the mean of x which is defined by

Equation 5.

 ̅ ∑

 ⁄ (5)

4.2 Experiments Evaluations

The two proposed approaches are evaluated with two

different datasets in two tests as follows:

4.2.1 The First Approach (Evaluation Gold

Standard)

The first approach is evaluated using the evaluation

gold standard dataset. The experimental results are

classified according to the applied algorithm of finding

1

http://alt.qcri.org/semeval2017/task1/data/uploads/ar_sts_data_

updated.zip
2

http://alt.qcri.org/semeval2017/task1/data/uploads/sts2017.eval

.v1.1.zip
3

http://alt.qcri.org/semeval2017/task1/data/uploads/sts2017.gs.z

ip

the closest words of the semantic word space of each

word.

4.2.1.1 Using the closest words algorithm

In this experiment, two tests are accomplished. The

first test uses the mapped vector model with the input

text words in their lemma form. The second uses the

input text and the fastText vector model in their surface

form. First, the input text is preprocessed with the

preprocessing tools except the stopwords are eliminated

once and keep another. The results of the Pearson

correlation coefficient are shown in Table (1).

Results of Table (1) proved that applying the

lemmatization technique for the input text with the

mapped vector model has a better effect than using the

fastText model and the input text in their surface form.

In addition, removing the stopwords from the input text

improved the results slightly.

Table (1) Experimental Results using the closest words

algorithm

Dataset With Pre-

Processing

With Surface

Form

With Lemma

Form

With StopWords 0.6708 0.6886

Without StopWords 0.6887 0.7000

Table (2) Experimental Results using the fastText

module.

The dataset in

Surface Form

Built-In

Function

Closest Words

Algorithm

With StopWords 0.6513 0.6708

Without StopWords 0.6679 0.6887

Table (3) Experimental Results for studying the

negation effect on the proposed Approach.

Dataset With

Pre-Processing

Before

Studying

Negation

After

Studying

Negation

With StopWords 0.6924 0.7052

Without

StopWords
0.7039 0.7212

http://alt.qcri.org/semeval2017/task1/data/uploads/ar_sts_data_updated.zip
http://alt.qcri.org/semeval2017/task1/data/uploads/ar_sts_data_updated.zip
http://alt.qcri.org/semeval2017/task1/data/uploads/sts2017.eval.v1.1.zip
http://alt.qcri.org/semeval2017/task1/data/uploads/sts2017.eval.v1.1.zip
http://alt.qcri.org/semeval2017/task1/data/uploads/sts2017.gs.zip
http://alt.qcri.org/semeval2017/task1/data/uploads/sts2017.gs.zip

140 Arabic Semantic-Based Textual Similarity

Benha Journal Of Applied Sciences, Vol. (7) Issue (4) (2022(

4.2.1.2 Using the fastText module

In this experiment, the proposed approach is applied

with input text in their surface form to be compatible

with the results of the built-In function

“get_nearest_neighbors”. The results shown in Table (2)

are obtained with stopwords and without stopwords.

Table (2) proved that the proposed algorithm for

finding the closest words achieved good results than the

built-in function that does the same task.

4.2.1.3 Studying Negation Effect

Negation is a significant factor that influences the

sentence's orientation (Ismail et al., 2016). Negation

terms in Arabic include (لم,ليس, ليست, لن, لا, عدم,). The

meaning of the sentence is reversed with these negative

words. These negation terms are scanned in each

sentence of the two input sentences in the proposed

method. If a negation word is found in a sentence, the

overall score will be reduced by (-1.5), as long as the

other sentence does not include negation terms. The

negation presence was represented by a score of (-0.5),

which substituted the (+1) score from the common word

score. The Pearson Correlation Coefficient of the entire

dataset was modified by these scores, as seen in Table 3.

In the last experiment done, the Pearson Correlation

Coefficient becomes close to the human judgment

scores. The score of 0.7212 is the highest value obtained

in applying the proposed approach.

4.2.1.4 Comparison with other approaches

Table (4) compares our proposed approach to other

works in the AR-AR track of the SemEval competition

2017 that had the highest PCC for the participants.

In Table (4), some researchers used the google machine

translator to increase the training dataset as a

requirement for the deep learning approach. Therefore,

their results are much better than the results of the

traditional approaches that use the native language. The

proposed approach is considered the second after [13].

4.2.2 The Second Approach (STS-MSRvid)

The second approach is evaluated using the STS-

MSRvid dataset. The experimental results were carried

out for each methodology and after applying the

permutation feature as shown in Table (5).

Table (4) Results for the SemEval participants for Evaluation Sets

Table (5) the proposed approach correlation results for the Development Sets

Input With Lemma Form PCC PCC + Permutation

Modified Edit Distance (MED)
With StopWords 0.6402 0.7010

Without StopWords 0.6544 0.7314

MED + Semantic Word Space
With StopWords 0.6792 0.7349

Without StopWords 0.6835 0.7589

Table (6) the proposed approach correlation with similar works for STS-MSRvid Dataset

Used Technique Research PCC

Lexical & Semantic Similarity Second Proposed Approach 0.759
Similarity features + Machine Learning

[15] 0.743

Mean of IDF weighted vectors [13] 0.691

The proposed approach is compared to other works that used the same dataset as shown in Table (6). It demonstrates that

our suggested approach has a higher PCC than other research, implying that it has a benefit when compared to other

methodologies.

Language Researchers PCC

Google Machine Translator

[8] 0.7543

[6] 0.7440

[7] 0.7304

Native Language

[13] 0.7463

First Proposed Approach 0.7212

[10] 0.7158

Shimaa Ismail, AbdelWahab Alsammak and Tarek Elshishtawy 141

Benha Journal Of Applied Sciences, Vol. (7) Issue (4) (2022(

5. Conclusion

In this paper, we proposed two-hybrid approaches

that combine different semantic similarity techniques for

measuring the similarity between two snipped Arabic

texts. The input text is preprocessed with different

preprocessing tools such as normalization and removing

noise diacritics which improved its efficiency.

Moreover, A lemmatization tool is applied for the input

text and the used word embedding model to enrich the

search word space. The semantic word spaces extracted

by applying the closest words algorithm or the fastText

module are also lemmatized. Applying the

lemmatization technique proved that it has a great effect

on results. In addition, the permutation tool is applied to

overcome the word order problem that affects the

similarity significantly. Finally, the experimental results

for the two proposed approaches over two different

datasets are satisfying and close to the most values for

the researchers who used the same datasets.

References

[1] W.H.Gomaa and A.A.Fahmy, “A Survey of Text

Similarity Approaches,” International Journal of

Computer Applications, vol.68, pp.13-18, 2013.

[2] N.Y.Habash, “Introduction to Arabic natural

language processing”. Synthesis lectures on

human language technologies, vol.3(1), pp.1-187,

2010.

[3] S.Ismail, A.Alsammak and T.Elshishtawy, “A

generic approach for extracting aspects and

opinions of Arabic reviews,” In Proceedings of

the 10th international conference on informatics

and systems, May., pp.173-179, 2016.

[4] M.Farouk, “Measuring sentences similarity: a

survey”. arXiv preprint arXiv:1910.03940, 2019.

[5] V.Levenshtein, “Binary codes capable of

correcting deletions, insertions and reversals,”

Soviet Physics Doklady, vol.10(8), pp.707-710,

1966.

[6] J.Tian, Z.Zhou, M.Lan and Y.Wu, “Ecnu at

semeval-2017 task 1: Leverage kernel-based

traditional nlp features and neural networks to

build a universal model for multilingual and

cross-lingual semantic textual similarity,”

In Proceedings of the 11th international

workshop on semantic evaluation (SemEval-

2017), August., pp.191-197, 2017.

[7] J.Henderson, E.Merkhofer, L.Strickhart and

G.Zarrella, “MITRE at SemEval-2017 Task 1:

Simple semantic similarity,” In Proceedings of

the 11th International Workshop on Semantic

Evaluation (SemEval-2017), August., pp.185-

190, 2017.

[8] H.Wu, H.Y.Huang, P.Jian, Y.Guo and C.Su,

“BIT at SemEval-2017 Task 1: Using semantic

information space to evaluate semantic textual

similarity,” In Proceedings of the 11th

International Workshop on Semantic Evaluation

(SemEval-2017), August., pp.77-84, 2017.

[9] R.Navigli and S.P.Ponzetto, “BabelNet: Building

a very large multilingual semantic network,” In

Proceedings of the 48th annual meeting of the

association for computational linguistics, July.,

pp.216-225, 2010.

[10] B.Hassan, S.AbdelRahman, R.Bahgat and

I.Farag, “FCICU at SemEval-2017 Task 1: Sense-

based language independent semantic textual

similarity approach,” In Proceedings of the 11th

International Workshop on Semantic Evaluation

(SemEval-2017), August., pp.125-129, 2017.

[11] Dzone “https://dzone.com/articles/introduction-

to-word-vectors”, [Date accessed 25/03/2022],

2018.

[12] P.Bojanowski, E.Grave, A.Joulin and T.Mikolov,

“Enriching word vectors with subword

information,” Transactions of the Association for

Computational Linguistics, vol.5, pp.135-146,

2017.

[13] E.Nagoudi, J.Ferrero and D.Schwab, “LIM-LIG

at SemEval-2017 Task1: Enhancing the semantic

similarity for arabic sentences with vectors

weighting,” In Proceedings of the 11th

International Workshop on Semantic Evaluation

(SemEval-2017), pp.134-138, 2017.

[14] M.A.Zahran, A.Magooda, A.Y.Mahgoub,

H.Raafat, M.Rashwan & A.Atyia. “Word

representations in vector space and their

applications for arabic.” In International

Conference on Intelligent Text Processing and

Computational Linguistics, pp.430-443, Springer,

Cham, 2015.

[15] M.Alian, A.Awajan, A.Al-Hasan and R.Akuzhia,

“Building Arabic Paraphrasing Benchmark based

on Transformation Rules,” Transactions on Asian

and Low-Resource Language Information

Processing, vol.20(4), pp.1-17, 2021.

[16] R.Mihalcea, C.Corley, & C.Strapparava. Corpus-

based and knowledge-based measures of text

semantic similarity. In Aaai ,Vol.6(2006),

pp.775-780, 2006.

[17] S.Fernando, M.Stevenson, “A semantic similarity

approach to paraphrase detection”.

In Proceedings of the 11th annual research

colloquium of the UK special interest group for

computational linguistics, pp.45-52, 2008.

[18] Z.Wang, H.Mi, A.Ittycheriah, “Sentence

similarity learning by lexical decomposition and

composition”. arXiv preprint arXiv:1602.07019,

2016.

https://dzone.com/articles/introduction-to-word-vectors
https://dzone.com/articles/introduction-to-word-vectors

142 Arabic Semantic-Based Textual Similarity

Benha Journal Of Applied Sciences, Vol. (7) Issue (4) (2022(

[19] K.Abdalgader, A.Skabar, “Short-text similarity

measurement using word sense disambiguation

and synonym expansion”. In Australasian joint

conference on artificial intelligence pp.435-444,

Springer, Berlin, Heidelberg, 2010.

[20] StanfordNLP Package, “StanfordNLP 0.2.0 -

Python NLP Library for Many Human

Languages”,

“https://stanfordnlp.github.io/stanfordnlp/index.ht

ml”, [Date accessed 25/03/2022]

[21] E.Grave, P.Bojanowski, P.Gupta, A.Joulin, and

T.Mikolov, “Learning word vectors for 157

languages,” arXiv preprint arXiv:1802.06893,

2018.

[22] FastText Model, “Word vectors for 157

languages”, “https://fasttext.cc/docs/en/crawl-

vectors.html”, [Date accessed 25/03/2022].

https://stanfordnlp.github.io/stanfordnlp/index.html
https://stanfordnlp.github.io/stanfordnlp/index.html
https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html

