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Abstract  
Textual similarity is one of the most important aspects of information retrieval. This paper proposes several techniques of 

semantic textual similarity as well as the factors that influence them. Two-hybrid approaches for measuring the degree of 

similarity between two Arabic snipped texts are presented. The first proposed approach combined the word-based and vector-

based similarity methods to construct semantic word spaces for each word of the input text. These words are represented in 

their lemma forms to capture all semantically related words. In this approach, the semantic word spaces are used to find the 

best matching between the input text words, and hence, the degree of similarity between the two snipped texts is computed. 

The second proposed approach combined semantic and syntactic based approaches. The basic Levenshtein concept 

represents the main structure for this approach. It has been modified to measure the edit cost at the token level not at the 

character level. In addition, the semantic word spaces are added to this approach to include the semantic features to the 

syntactic features. Some techniques are embedded to overcome the syntactic approach problems such as the word sequence. 

Pearson correlation coefficient is used to measure the degree of correctness of the two proposed approaches as compared to 

two benchmark datasets. The experiments achieved 0.7212 and 0.7589 for the two proposed approaches on two different 

datasets.  

 

Keywords: Arabic Text Similarity, Semantic Similarity, Lexical Similarity, Word Embedding, Permutation Feature, 
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1. Introduction 

STS (Semantic Textual Similarity) metrics have been 

a major topic in a variety of studies and applications. 

Information retrieval, machine translation, text 

summarization, sentiment analysis, question generating 

and answering, automatic essay scoring, automatic short 

answer grading, and other activities all rely on them [1]. 

There are several barriers in determining the 

semantic similarity or relationship between two snipped 

Arabic texts, including morphological inflections and 

orthographic confusion related to optional diacritization. 

As a result, there are more homographs than in English, 

which adds to the confusion [2]. The Arabic word "ذهب" 

for example, maybe the verb "Went" or the noun "Gold" 

with various diacritics. It is possible to discern between 

the two meanings based on the part of speech tagging 

and the context of the word. As a result, it is important to 

do this work with a conventional morphological tool. In 

this research, the StanfordNLP library is used as a 

morphological tool to determine the Part of Speech 

(POS) tagging for words. In addition, the lemmatization 

approach was employed in our study to avoid the 

diacritization difficulty and its impact by using the 

lemma form of the word. The inflected word form is 

transformed into its dictionary lemma look-up form 

through lemmatization [3]. This lemma form is the 

shortest that captures all the word's semantic 

characteristics.  

There are two different types of sentence similarity: 

lexical similarity and semantic similarity. Lexical 

similarity looks at a sentence as a series of characters 

and determines how similar these characters are. The 

semantic similarity, on the other hand, is determined by 

the meaning of the phrases. It is necessary to determine 

the degree of relatedness between sentences to quantify 

semantic similarity [4].   

The Levenshtein approach is one of the approaches 

that measure the similarity of texts lexically. The 

Levenshtein distance is a statistic for calculating how 

many edit operations are necessary to convert one string 

to another [5]. The distance between two words is 

defined as the number of single-character changes (i.e., 

insertions, deletions, or replacements) necessary to 

change one word into the other in its original form. The 

edit distance is expanded in this study to detect distances 

between two sentences given in words rather than 

characters. In addition, semantic features are embedded 

to change the edit cost between the input words. 

Semantic word spaces are generated from one of the 

word embedding models that represent the words in a 

vector space. This vector space defined the meaning of 

words and the relation between them. There are two 

algorithms used to extract these semantic word spaces in 

this research. In the two proposed approaches, the 

semantic word spaces are used in two different manners. 

In this paper, two hybrid approaches are proposed to 

enhance the overall calculations of the similarities 

between two texts. An interlaced approach that combines 

word-based and vector-based approaches was proposed. 

A modified strategy that combines both syntax and 

semantic techniques also presented.   
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The rest of the paper is organized as follows. Section 

2 represents the related work of the semantic similarity 

approaches. Section 3 explains the approach 

methodology. In section 4, the evaluations of the 

experimental results are described. Finally, the 

conclusion of our approach is presented in section 5. 

 

2. Related Work 

Arabic snipped texts can be classified according to 

the adopted methodology as follows: 

One of the most used strategies for evaluating 

semantic similarity is deep learning with feature-

engineered models. Tian et al. [6] used characteristics 

such as n-gram overlap, edit distance, and longest 

common prefix/ suffix/ substring to train deep learning 

algorithms. They were able to reach a PCC of 0.7440. 

On the aspects of alignment similarity and string 

similarity measurements, Henderson et al. [7] employed 

the same method with various algorithms, such as 

Recurrent Neural Networks (RNN) and Recurrent 

Convolutional Neural Networks (RCNN). For the same 

dataset, their PCC is 0.7304. 

For the same dataset utilized, the semantic 

information space (SIS) is a technique that produced a 

high Pearson correlation coefficient. The non-

overlapping Information Content (IC) computation is 

obtained using this method, which is based on the 

semantic hierarchical taxonomy in WordNet. This 

method was employed by Wu et al [8] in three studies. 

As they used the IC which is based on the word 

frequencies from WordNet and the British National 

Corpus. They also collaborate the IDF weighting system 

using the IC with cosine similarity. The highest Pearson 

correlation coefficient is presented in this competition by 

0.7543. 

BableNet is a huge, multilingual semantic network 

with broad coverage that gathered its data from Wordnet 

and Wikipedia [9]. The multilingual word-sense aligner 

proposed by Hassan et al., [10] relies heavily on the 

BableNet network. According to the Bable synsets, they 

built an aligner that aligns each word in one phrase to 

another word in the other. In many languages, these 

synsets reflect the word's meaning, named entity, and 

synonyms. For the used Arabic dataset, PCC is 0.7158. 

Word embedding is a common method for various 

text applications and NLP activities. The distributed 

representation of words in a vector space is referred to as 

word embedding. Traditional NLP techniques miss 

syntactic (structure) and semantic (meaning) links across 

collections of words. As a result, using word vectors to 

represent words has its advantages. The word vectors are 

multidimensional continuous floating-point values in 

which semantically comparable words are transferred to 

geometrically close regions. Each point in the word 

vector represents a dimension of the word's meaning, 

i.e., words used in comparable contexts are mapped to a 

proximal vector space. Different techniques represent the 

words in vector spaces such as Skipgram skip-G, 

Continuous Bag of Words CBOW, and the co-

occurrence frequency. The terms "flower" and "tree," for 

example, are semantically related since they both refer to 

plants and are used in the same context [11]. FastText is 

one of these word embedding models that presented 

word representation for the Arabic language. FastText is 

an unsupervised learning technique that generates vector 

representations for words in 294 languages [12]. It 

supports both CBOW and skip-G models. 

Nagoudi et al. [13] used a word embedding model 

presented by Zahran et al. [14] based on CBOW, Skip-

G, and GloVe approaches to determine the semantic 

similarity of Arabic sentences. Additionally, they 

included two weighing functions: IDF weighting and 

POS tagging. They achieved a PCC of 0.7463 ranked the 

first for applying an approach with the native language 

and the second among all participants. 

Alian et al., [15] proposed a method that combined 

lexical, semantic and syntactic-semantic features with 

machine learning techniques like linear regression and 

support vector machine regression. They applied the 

Levenshtein method and one of the word embedding 

models to represent words in a vector space. They 

evaluated their approach on three different datasets. For 

the STS-MSRvid of the SemEval competition dataset, 

they achieved a PCC of 0.743. 

The word-based similarity category treats the phrase 

as a collection of words; hence it is based on the 

similarity between terms. There are several approaches 

for determining phrase similarity in this area, including 

maximum similarity, similarity matrix, employing 

similar and dissimilar components, and word meaning 

disambiguation [4]. In addition, several of these 

strategies are integrated. First, the maximum similarity 

of each word in the first sentence and each word in the 

second sentence is determined using the Max similarity 

approach. The average similarity is then determined 

[16]. The similarity matrix method generates a matrix 

containing the results of calculating the similarity 

between each word in each sentence and the words in the 

other sentence [17]. Wang et al., [18] describe the use of 

similar and dissimilar parts to represent words using 

word embedding. They then used cosine similarity to 

create a similarity matrix. Furthermore, a semantic 

matching function was used to create a semantic 

matching vector for each word. They break down the 

resulting match vectors to discover which portions of 

each vector are similar and which are distinct. Finally, 

the similarity is calculated using these vectors. In [19], 

they utilized Wordnet synonyms to extend the words of 

the original phrases, then generated a vector 

representation for these words in addition to the vectors 
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of the set of terms in each sentence. Finally, the cosine 

similarity of the two vectors is used to calculate the 

similarity. 

 

3. Methodology 

In this research, we presented two-hybrid approaches 

for two different semantic techniques. 

3.1 The First Proposed Approach  

In the first approach, we present a hybrid 

methodology that combines two semantic similarity 

approaches: word-based and vector-based methods, to 

quantify the semantic similarity between two snipped 

Arabic texts. The vector space of each word is first 

retrieved in lemma form using the fastText vector model. 

The StanfordNLP library was used to generate their 

lemma form. To analyze natural language, the 

StanfordNLP package is employed. It turns a string of 

human language text into lists of sentences and words, 

generates basic forms of those words, parts of speech, 

and morphological aspects, and provides a syntactic 

structural dependency parse that is parallel across over 

70 languages [20]. It is utilized for tokenization and 

lemmatization in both the fastText vector model and the 

input text in our technique. In the following part, we'll 

go through how to do that. Second, utilizing the vector 

word-space of sentences, a word-matching matrix is 

created. Finally, the degree of similarity between 

sentences is calculated.  

Fig. (1) illustrates the suggested technique, which is 

divided into three stages: 

1) Vector-Based Similarity, 

2) Word-Based Similarity,  

3) Similarity Measures. 

3.1.1 Vector-Based Similarity 

FastText Models are available and readable for the 

Arabic language. FastText models trained using CBOW 

with position-weights, in dimension 300, with character 

n-grams of length 5, a window of size 5, and 10 

negatives [21]. Arabic fastText corpus contains more 

than 356 thousand words. These words are totally 

different represented in their surface form. A screenshot 

from this dataset is shown in fig. (2). 

 

 

 
 

Fig. (1) The Proposed approach Overview. 

 

 
 

Fig. (2) A screenshot from the fastText Arabic Model dataset 
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Many studies employed the vector space model's surface 

form to derive the semantic similarity between words 

that did not include additional semantically related 

terms. But in this research, a lemmatization technique is 

used to improve the search word space for the fastText 

model words. The lemmatization is applied for the input 

text and the fastText vector model and stated as a 

mapped fastText model. Some other preprocessing tools 

are applied for the text such as noise removal, word 

normalization, eliminating stopwords.  

There are two techniques are used to extract the 

semantic word spaces for each word of the input words: 

using the closest words algorithm or a ready-made 

function built in the fastText module in python language. 

3.1.1.1 Using the closest words algorithm 

To extract the closest words for each word in the 

sentences, vectors are employed to extract semantic 

similarity using a word embedding or word 

representation. For related or near-synonymous words, 

these vectors shared the same semantic properties. The 

suggested method extracts comparable words from the 

mapped fastText model using the preprocessed and 

lemma form of input words. There are numerous indices 

in the mapped model for each word in the input text that 

contains the same word but distinct vectors. Fig. (3) 

showed the process of extracting the semantic word 

space for a specific word. 

The mapped vector model is used to extract the 

closest words using Algorithm 1. Where np is the 

NumPy library stands for Numerical Python. 

 
 

Fig. (3) The process of extracting the semantic word space for a word using the closest words algorithm 

 

Algorithm 1: Finding the closest words for a specific word  

Input: The Word Vector, N 

Output: Similar Words 

1. difference = vector of all words – vector of a word 

2. delta = np.sum(difference * difference) 

3. i = np.argmin(delta) 

4. similar word = word of index i 

5. drop the index of this similar word 

6. iterate the previous steps by N times 

7. Return similar words  

 

 
Fig. (4) The process of extracting the semantic word space for a word using the fastText library 
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Iterating over the whole vectors of the mapped 

fastText model to obtain the index of the most 

comparable word can be used to find the closest word. 

By repeating the loop N times with the same method, N 

numbers of related terms are discovered. The word space 

number for each word can be assigned, however, 

according to the mapped fastText model, each word has 

a distinct number of indexes. The main purpose is to 

increase the word search space by collecting more 

relevant comparable terms for a particular word. In this 

approach, we extract 10 closest words for each index. 

3.1.1.2 Using the fastText module 

The language model of the fastText organization was 

released as a Python module [22]. Similar words can be 

retrieved using a built-in function named "get nearest 

neighbors" in this package or module. Like the word 

space for each word, this function returns the 10 closest 

neighbors of the searched word in its surface form. The 

process of extracting the semantic word space using the 

fastText module is shown in Figure 4. 

3.1.2 Word-based Similarity  

In this stage, we tried to find the relatedness or the 

association between words. From the semantic words 

spaces, a common word matrix is built. This matrix is 

constructed by the common words of each pair of words 

by their semantic word spaces. From this matrix, a 

matching matrix is generated by selecting the most 

common words between each pair of words. The 

matching matrix consists of the words of the first 

sentence matched to some of the second sentence words 

with the number of common words (NCW). 

3.1.3 Similarity Measures 

For two sentences s1 and s2 with a length of n and m 

respectively, the similarity score is measured by 

Equation 1.  Where p is the length of the matching 

matrix.  

           
∑                                 ⁄
 
 

        
  (1) 

The result value is a ratio from 0 to 1 scale. So, we 

multiply the output by 5 to make the output ratio is from 

0 to 5 scale. The zero value represents that the two 

sentences are quite different, and the five value indicates 

that the two sentences are typical.  

3.2 The Second Proposed Approach 

In the second approach, a modified approach is 

presented to measure the similarity of two snipped 

Arabic texts lexically and semantically based on the edit 

distance approach. This proposed approach is hybrid in 

the sense that both syntax and semantic features are used 

to measure the similarity. Different knowledge resources 

are employed such the semantic word spaces. Also, the 

approach presents a solution to miss ordering of words 

between given two sentences. The modified edit distance 

approach is based on different weights (edit cost) 

according to the state of the two words.  

The proposed workflow for measuring the edit cost 

between two words is shown in Fig (5).  

 

 

 
 

Fig. (5) The workflow diagram of finding the edit cost of two words 
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Algorithm 2: Finding the edit cost between two words  

Input: Pair of words S1[i], S2[j] 

Output: Edit cost 

Let cost be the edit cost,  

IF the word S1[i] = the word S2[j],  

then, cost=0;  

ELSE IF S1[i] is one of the semantic space words of S2[j] according to the fastText module, 

 then, cost= 1- similarity score (SC); 

ELSE IF S2[j] is one of the semantic space words of S1[i] according to the fastText module, 

 then, cost = (1- SC); 

ELSE IF there are common words bw the two semantic spaces obtained by the closest words algorithm,  

 then, cost = 1- similarity ratio (SR); 

SR = NCW/ Max (|WS1|,|WS2|), 

Where NCW is the number of common words between WS1[i] and WS2[j], 

Where WS1 is the length of the word space of word i in S1 that differ according to each word,  

Where WS2 is the length of the word space of word j in S2 that differ according to each word,  

ELSE, cost=1; 

The frame algorithm for calculating the edit cost of 

given two words in two sentences is presented in 

Algorithm 2. 

In this proposed approach, new features are 

combined to provide accurate measures of the similarity 

between two snipped Arabic texts. The following 

summarizes the features and proposed modules of the 

approach.  

3.2.1 Token Lemma Level 

The Levenshtein approach is one of the lexical 

similarity strategies based on the edit distance metrics. 

The cost of changing one string into another is calculated 

using its methodology, which assigns a unity cost to all 

edit operations. This cost is utilized to create a character 

matrix between the two words, which then yields the edit 

distance. The suggested method extends the Levenshtein 

algorithm by computing 'edit distances' at the token level 

rather than the character level as in the traditional 

algorithm. The lemma versions of the tokens are 

represented. In addition, the input text is pre-processed 

using the mentioned pre-processing tools in the first 

proposed approach. 

3.2.2 Embedding Semantic Knowledge 

The cost between each pair of words is calculated 

using the semantic word spaces produced from the two 

algorithms outlined in the first proposed approach. In 

algorithm 2, the edit cost between each pair of words has 

a different value according to their state. First, the 

semantic word space obtained from the fastText module 

is used. The ten nearest neighbors’ words obtained from 

the fastText module have similarity scores (SC) for each 

term. This score shows how closely the retrieved 

comparable word is semantically connected to the 

searched word. The edit cost between two words is 

determined by (1-SC) if the first word is one of the 

semantic space words of the second word and vice versa. 

Otherwise, the semantic word spaces generated from 

Algorithm 1 are used. The two semantic spaces' common 

terms are considered as NCW. The SR is then 

determined by dividing the NCW by the maximum 

length of the two semantic spaces, which is differing 

according to each word. The cost will be (1-SR). 

Otherwise, the cost equals one. 

For two sentences S1, S2 with length n, m words 

respectively, a corresponding matrix CM is constructed 

depending on the edit cost between each pair of words. 

The value of CM[i+1][j+1] is as shown in Equation 2: 

 

   {

  [ ][   ]        

  [   ][ ]       

  [ ][ ]        

                      (2) 

Finally, the edit distance between the two sentences 

is represented by the final value of CM[-1][-1]. The 

similarity between the two sentences is measured by 

Equation 3. 

 

             
             

              
         (3) 

3.2.3 Applying Word Permutation  

The Levenshtein method is based on word order and 

word syntactic dependencies. For example, the two 

phrases “Every morning the sun shines in the sky” and 

"The sun shines in the sky every morning” in Arabic 

" سماء كل صباحتسطع الشمس في ال  " and " كل صباح تسطع الشمس في

 have the same meaning and their similarity should "السماء

be 100 percent, however, when using the Levenshtein 

technique, the similarity would be zero owing to 

incorrect word order. As a result, a permutation 

approach is employed to determine the optimal word 

alignment between the two texts. A permutation is a 

mathematical approach for determining the number of 

alternative arrangements in a set when the order of the 

arrangements is needed. One of the two phrases is 

rearranged n! times, where n is the sentence's word 

length. In our approach, we utilized this technique for 

five words only to reduce the complexity of permutation 
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operations. For each candidate sequence, the edit 

distance is calculated. The candidate sequence with the 

shortest edit distance is chosen as the one that most 

accurately matches the alignment of the words in the two 

sentences.  

 

4. Experiments 

4.1 Dataset Description 

We utilized the dataset from the Semantic Evaluation 

“SemEval” yearly competition to assess the performance 

of our approach. This event is used for a variety of 

languages and track issues. The semantic similarity 

between texts is one of these tracks (word phrases, 

sentences, paragraphs, or full documents). Furthermore, 

the text might be in monolingual or multilingual formats. 

2017 was the final year of the competition that used the 

semantic similarity track. 

Development Sets and Evaluation Sets are the two 

datasets included in the released dataset. One of the 

Development Sets for monolingual Arabic snipped texts 

is the STS-MSRvid dataset
1
, which contains 368 pairs of 

sentences. The Evaluation Sets
2
 are a collection of 250 

sentence pairs with human judgment ratings that were 

published as the Evaluation Gold Standard
3
. In the 

output of these datasets, the Pearson Correlation 

Coefficient (PCC) between each pair of sentences is 

supplied in a one-column table. This coefficient runs 

from -1 to 1, with a value of (-1) indicating that the 

values of the two columns are completely different and a 

value of (1) indicating that they are identical. This 

coefficient is expressed in Equation 4. 

      
∑      ̅      ̅  
   

√∑      ̅   
    √∑      ̅   

   

     (4) 

Where  ̅ is the mean of x which is defined by 

Equation 5. 

 

 ̅   ∑   
 
    ⁄                            (5) 

4.2 Experiments Evaluations 

The two proposed approaches are evaluated with two 

different datasets in two tests as follows: 

4.2.1 The First Approach (Evaluation Gold 

Standard) 

The first approach is evaluated using the evaluation 

gold standard dataset. The experimental results are 

classified according to the applied algorithm of finding 

                                                 
1  

http://alt.qcri.org/semeval2017/task1/data/uploads/ar_sts_data_

updated.zip 
2 

http://alt.qcri.org/semeval2017/task1/data/uploads/sts2017.eval

.v1.1.zip 
3 

http://alt.qcri.org/semeval2017/task1/data/uploads/sts2017.gs.z

ip 

the closest words of the semantic word space of each 

word. 

4.2.1.1 Using the closest words algorithm 

In this experiment, two tests are accomplished. The 

first test uses the mapped vector model with the input 

text words in their lemma form. The second uses the 

input text and the fastText vector model in their surface 

form. First, the input text is preprocessed with the 

preprocessing tools except the stopwords are eliminated 

once and keep another. The results of the Pearson 

correlation coefficient are shown in Table (1).  

Results of Table (1) proved that applying the 

lemmatization technique for the input text with the 

mapped vector model has a better effect than using the 

fastText model and the input text in their surface form. 

In addition, removing the stopwords from the input text 

improved the results slightly. 

 

Table (1) Experimental Results using the closest words 

algorithm 

 

Dataset With Pre-

Processing 

With Surface 

Form 

With Lemma 

Form 

With StopWords 0.6708 0.6886 

Without StopWords 0.6887 0.7000 

 

Table (2) Experimental Results using the fastText 

module. 

 

The dataset in 

Surface Form 

Built-In 

Function 

Closest Words 

Algorithm 

With StopWords 0.6513 0.6708 

Without StopWords 0.6679 0.6887 

 

Table (3) Experimental Results for studying the 

negation effect on the proposed Approach. 

 

Dataset With 

Pre-Processing 

Before 

Studying 

Negation 

After 

Studying 

Negation 

With StopWords 0.6924 0.7052 

Without 

StopWords 
0.7039 0.7212 

 

http://alt.qcri.org/semeval2017/task1/data/uploads/ar_sts_data_updated.zip
http://alt.qcri.org/semeval2017/task1/data/uploads/ar_sts_data_updated.zip
http://alt.qcri.org/semeval2017/task1/data/uploads/sts2017.eval.v1.1.zip
http://alt.qcri.org/semeval2017/task1/data/uploads/sts2017.eval.v1.1.zip
http://alt.qcri.org/semeval2017/task1/data/uploads/sts2017.gs.zip
http://alt.qcri.org/semeval2017/task1/data/uploads/sts2017.gs.zip
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4.2.1.2 Using the fastText module 

In this experiment, the proposed approach is applied 

with input text in their surface form to be compatible 

with the results of the built-In function 

“get_nearest_neighbors”. The results shown in Table (2) 

are obtained with stopwords and without stopwords.  

Table (2) proved that the proposed algorithm for 

finding the closest words achieved good results than the 

built-in function that does the same task. 

4.2.1.3 Studying Negation Effect 

Negation is a significant factor that influences the 

sentence's orientation (Ismail et al., 2016). Negation 

terms in Arabic include ( لم,ليس, ليست, لن, لا, عدم,  ). The 

meaning of the sentence is reversed with these negative 

words. These negation terms are scanned in each 

sentence of the two input sentences in the proposed 

method. If a negation word is found in a sentence, the 

overall score will be reduced by (-1.5), as long as the 

other sentence does not include negation terms. The 

negation presence was represented by a score of (-0.5), 

which substituted the (+1) score from the common word 

score. The Pearson Correlation Coefficient of the entire 

dataset was modified by these scores, as seen in Table 3. 

In the last experiment done, the Pearson Correlation 

Coefficient becomes close to the human judgment 

scores. The score of 0.7212 is the highest value obtained 

in applying the proposed approach. 

4.2.1.4 Comparison with other approaches 

Table (4) compares our proposed approach to other 

works in the AR-AR track of the SemEval competition 

2017 that had the highest PCC for the participants.  

In Table (4), some researchers used the google machine 

translator to increase the training dataset as a 

requirement for the deep learning approach. Therefore, 

their results are much better than the results of the 

traditional approaches that use the native language. The 

proposed approach is considered the second after [13]. 

4.2.2 The Second Approach (STS-MSRvid) 

The second approach is evaluated using the STS-

MSRvid dataset. The experimental results were carried 

out for each methodology and after applying the 

permutation feature as shown in Table (5). 

 

 

Table (4) Results for the SemEval participants for Evaluation Sets 

 

 

 

Table (5) the proposed approach correlation results for the Development Sets 

 

Input With Lemma Form PCC PCC + Permutation 

Modified Edit Distance (MED) 
With StopWords 0.6402 0.7010 

Without StopWords 0.6544 0.7314 

MED + Semantic Word Space 
With StopWords 0.6792 0.7349 

Without StopWords 0.6835 0.7589 

 

Table (6) the proposed approach correlation with similar works for STS-MSRvid Dataset 

 

Used Technique Research PCC 

Lexical & Semantic Similarity Second Proposed Approach 0.759 
Similarity features + Machine Learning 

 
[15] 0.743 

Mean of IDF weighted vectors [13] 0.691 

 

The proposed approach is compared to other works that used the same dataset as shown in Table (6). It demonstrates that 

our suggested approach has a higher PCC than other research, implying that it has a benefit when compared to other 

methodologies. 

 

 

 

Language Researchers PCC 

Google Machine Translator 

[8] 0.7543 

[6] 0.7440 

[7] 0.7304 

Native Language 

[13] 0.7463 

First Proposed Approach 0.7212 

[10] 0.7158 
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5. Conclusion 

In this paper, we proposed two-hybrid approaches 

that combine different semantic similarity techniques for 

measuring the similarity between two snipped Arabic 

texts. The input text is preprocessed with different 

preprocessing tools such as normalization and removing 

noise diacritics which improved its efficiency. 

Moreover, A lemmatization tool is applied for the input 

text and the used word embedding model to enrich the 

search word space. The semantic word spaces extracted 

by applying the closest words algorithm or the fastText 

module are also lemmatized. Applying the 

lemmatization technique proved that it has a great effect 

on results. In addition, the permutation tool is applied to 

overcome the word order problem that affects the 

similarity significantly. Finally, the experimental results 

for the two proposed approaches over two different 

datasets are satisfying and close to the most values for 

the researchers who used the same datasets. 
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