Latarjet procedure Versus Free Iliac Graft in Management Of Recurrent Shoulder Dislocation With Bone Defect, A Comparative Study article review

Mohamed.M.Elwan, Mohamed.S.Shawky and EL-sayed.M.Bayomy
orthopedic surgery Dept., Faculty of Medicine Benha University
E-mail: midokinggg1982@gmail.com

Abstract

Background: Over the last couple of decades, there has been much discussion on how best to manage patients with recurrent traumatic anterior glenohumeral instability. When dealing with bone loss due to repeated shoulder dislocation, Latarjet and Eden Hybinette are both excellent treatment options. In instances of recurrent shoulder dislocation with glenoid bone loss or Hill Sachs lesion of the humeral head, the goal of this study is to evaluate the functional outcomes of Latarjet against free tricortical iliac graft. Cases and procedures: Forty adult patients with repeated shoulder dislocations and bone loss participated in this prospective randomised controlled trial (RCT). Two groups of patients were selected at random. (twenty cases of Eden Hybinette and twenty handles for Latarjet aircraft). We compared the outcomes radiographically using CT after at least six months and clinically using the modified Rowe score. Potential side effects in both groups were also recorded. No clinically or radiographically significant differences were seen between the groups (P > .05). Latarjet group had significantly reduced ROM (particularly internal and external rotation) at the last follow-up (P = 0.05). Tramadol caused repeated dislocation in one patient in the latarjet group. Two people in each set had solely frontal lobe anxiety. Ten percent of patients in the Eden group had donor-site sensory problems. On CT, the grafts in the iliac group seemed bigger. In conclusion, Latarjet and Eden Hybinette are two competing methods for regaining bone-loss-related shoulder stability.

Keywords: Bone augmenting techniques, Latarjet procedure, Eden Hybinette procedure, Recurrent shoulder dislocation with bone loss

Introduction

Shoulder When it comes to diagnosing and treating joint problems, instability is among the most contentious. The most typical kind is the traumatic anterior type [1]. Shoulder dislocation occurs at a rate of 12 per 100,000 people annually, according to Thilemann and Holz; if repeated dislocations are included, the rate increases to 17 per 100,000 people annually. The anterior-inferior dislocation accounts for 95% of all shoulder dislocations, whereas the posterior dislocation accounts for 3% and the remaining forms account for 2% [2]. There is a significant failure rate after Bankart repair as a result of decreased shoulder congruency caused by neglect of bone loss [3,4]. This bone loss might be unipolar or bipolar. Latarjet technique is superior to iliac grafting because of its three-pronged impact (bony, ligamentous, and muscular) [5]. However, it’s important to consider the potential drawbacks of Latarjet, such as reduced mobility, shoulder dyskinesia, neurovascular damage, revision surgery challenges, and the onset of glenohumeral arthritis. Eden Hybinette is often prescribed for patients with uncontrolled epilepsy, a significant glenoid defect more than 50 percent, or a failed Latarjet procedure. High-contour, non-immunogenic, and with osteoinductive and osteoconductive characteristics, autologous ICBG provides an almost infinite supply of graft [6]. Both Eden [7] and Hybinette [8] described it for the first time in 1918. Warner et al. [6] presented the intraarticular autologous tricortical iliac crest technique as a solution to the problems found with Latarjet. Osteolysis and donor-side problems must be considered when using iliac grafts, despite the fact that they may yield greater graft material side [9].

Aim Of This Work

To In situations of repeated shoulder dislocation resulting in significant glenoid bone loss or a humeral Hill Sachs lesion, the functional outcomes of Latarjet vs autologous free tricortical iliac graft should be compared.

Patients And Methods

Forty adult patients with recurrent shoulder dislocation and glenoid bone loss of more than 20% or hill sachs lesions of more than 25% participated in this randomised controlled trial (RCT). Each patient was randomly assigned to either the iliac grafting (case group) or Latarjet (control group) group until we had gathered twenty patients treated with the iliac grafting (case group) and twenty patients treated with the Latarjet (control group) (control group). Patients were selected at random from the Outpatient Departments of Benha University Hospital (Benha City, Egypt) and East Jeddah Hospital between December 2020 and May 2023. (Jeddah, Saudi Arabia). Patients' case records and signed informed consent forms were collected. All patients had a standard X-ray, CT (Figure 2), and MRI [10, 11]. Open Latarjet procedures using the method reported by Young et al. [12] or open ICBGT procedures using the method described by Warner [13] were randomly allocated to patients. Both sets of people are seated on a low beach chair. Both groups used a deltopectoral approach, but the Eden Hybinette
procedures also included an incision at the anterior iliac crest to collect grafts. During the Latarjet procedure, the pectoralis minor tendon is cut, the coracoid is osteotomized close to the base while leaving the conjoined tendon and parts of the coracoclavicular ligament attached. The subscapularis is permanently split horizontally, the capsule is split vertically, the coracoid is transposed to the anterior glenoid rim flush with the glenoid articular surface, fixed with 2 screws, and After determining the size of the glenoid defect in Eden Hybinette, a tricortical iliac graft was taken from the patient and inserted intra-articularly with the inner table facing laterally. Two screws were used for fixation, and the horizontal split in the suscapularis was stitched back together (side by side). Patients were clinically monitored for a minimum of six months using the pain, stability, mobility, and function components of the modified Rowe scale [14]. At the conclusion of at least six months of follow-up, radiographic evaluation of the graft's healing was performed using X-ray and CT scans. Finally, we examined the outcomes for patients treated with Latarjet and Eden Hybinette. The information was evaluated statistically using SPSS (Statistical Package for the Social Sciences).

Clinical outcome assessment: preoperative Instability testing, such as the apprehension test [14] and the relocation test [15]; hyperlaxity evaluation utilising the Beighton score [16]; thorough case histories (first dislocation age, reasons, numbers, prior surgical repair, and bilateral affection). Testing the shoulder's strength was done by using dynamometer. Assessing the ROM was done by using Goniometer. Assessment of various types of instabilities such as a dislocation, subluxation, apprehension positive or apprehension negative were done.

Inclusion Criteria:
It meant the following: (1) Traumatic anterior shoulder dislocation that occurs often. Two) Isolated incidents. (3) Individuals between the ages of 18 and 35. (4) Large engaging Hill Sachs lesion (covering more than 25 percent of the humeral articular surface) or antero-inferior glenoid bony defect (covering more than 20 percent of the antero-posterior width). (5) Previously unsuccessful stability operation, such as a Bankart repair.

Exclusion Criteria:
It was first, those who are prone to falling in many different directions. Glenohumeral dysplasia (2) patients. Three patients who also had a tear of the rotator cuff. Four) People who had a shoulder surgery instead of a stabilisation treatment in the past. (5) People who have broken the greater tuberosity or the proximal humerus at the same time. (6) Individuals who suffer from unchecked neurological disorders (e.g. epilepsy). Paralytic dislocation, number seven. Instability Severity Score 6 in 8 or more patients Index (LS.IS) score [16].

Results
Both groups showed no significant differences regarding their preoperative characteristics including age, gender, dominance of the affected side, occupation, mechanism of trauma, hyperlaxity, age of first dislocation, number of dislocation, previous failed Bankart, and preoperative modified Rowe scores’ means. Also no significant difference between pre-operative radiologic assessment including either glenoid bone loss or Hill Sachs sizes.

a. Clinical outcome: The difference between the method of postoperative global morphological change At the 6-month post-op follow-up, the difference between the Latarjet and iliac groups in terms of Rowe ratings was not statistically significant (p=0.699). Seventeen patients (85%) in the Latarjet group and eighteen patients (90%) in the iliac group reported satisfaction. (p=1) (Figure 1). Both exterior and internal rotation in the Latarjet group were restricted to 90 degrees (P=0.028* and P=0.036*, respectively); this difference was statistically significant, however most observations were within 10 degrees (P of total motion between both groups = 0.042*). One patient in the Latarjet group (5%) had recurrent dislocation after undergoing revision surgery using a free iliac graft to correct screw bending that developed after a second seizure. As a result of fresh, mild traumatic experiences, two patients in each group (10%) tested positive for fear only after surgery. One person in the Latarjet group had a superficial surgical site infection that required antibiotic treatment, irrigation, and debridement. Two patients had hematoma at the surgery site, but they healed well after receiving therapy. For subsequent follow-up, one patient had graft non-union without any obvious clinical consequences. Physiotherapy and medicine were able to alleviate the pain experienced by three individuals in the iliac graft group due to donor site discomfort. Two patients had sensory abnormalities around the donor-site scar (numbness on the upper lateral region of the thigh), but at 6 months follow-up, they had completely healed. Wound debridement, daily dressings, and antibiotic therapy were effective in curing the three cases of infection that occurred at the donor site apy.
b. **Radiologic outcome:** post-operative
glenoid The iliac graft augmentation considerably outperformed the Latarjet
method in terms of surface area ($p = 0.02$),
defect area ($p = 0.003$), diameter ($p = 0.009$),
depth ($p = 0.034$), and retroversion ($p = 0.002$).
Eighty-three percent of ICBGT patients and sixty-eight percent of Latarjet patients were
found to have off-track Hill-Sachs lesions prior to surgery ($P = 0.206$). Only 14% of
patients in the ICBGT group and 28% of patients in the Latarjet group had off-track
abnormalities after surgery ($P = 0.310$).

Discussion

Both Latarjet & Eden Hybinette are
golden modalities in reconstructing bone
defects of recurrent shoulder dislocation.

Ideal graft position:

In our research, we found that it was
best to position the coracoid graft directly on
top of the glenoid rather than out to the side.
Of the total number of grafts, 16 (80%) in the
Latarjet group and 18 (90%) in the iliac graft
group were flush with the glenoid. This finding
was consistent with those of earlier research
showing that the precise location of the
coracoid graft is crucial in establishing long-
term success. Although the ideal placement is
hard to pin down, it is generally agreed that it
should be neither too medial nor excessively
lateral (less than 10 mm from the cartilage for
some, less than 2 mm for others). In order to
maximise the glenoid's articular surface, the
core blocks, according to some writers [17],
should be completely flush. Additionally,
Ghodadra et al biomechanical.s investigation
suggests that normalising glenohumeral
pressures may be achieved by fixing the graft
flush with the glenoid. When the graft is fixed
laterally by 2 mm or more, contact pressures
rise [18]. Both groups' grafts are located at or
below the equator (no grafts are located above
the equator) and, according to Saito et al. [19],
the average glenoid fracture on the right
scapula occurs between 2:30 and 4:30.
Similarly, Hovelius et al. [20] found that grafts
located above the equator had a higher
recurrence rate than those located below it.
Radiographic evaluation and postoperative
outcomes did not agree, according to research
by Doursounian et al. CT scans [21].

There was no discernible difference in
clinical (means of post-operative modified
Rowe scores) or radiological (number of
cancers detected) results between the two
groups. This finding is in line with the
literature; in a prospective randomised trial of
60 patients, Moroder et al. (Neer Award 2019)
compared the clinical (WOSI and Rowe
scores) and radiological (graft survival at 6,
12, and 24 months) outcomes of an open
Latarjet graft transfer versus an iliac crest graft
transfer. No significant changes were found in
clinical or radiographic measures, and no
differences were seen in measures of strength
or range of motion, with the exception of
decreased internal rotation in the Latarjet
group. [6]. Both the Eden-Hybinette and
Bristow-Latarjet techniques for glenoid bone
augmentation for chronic anterior shoulder
instability have been shown to have
comparable clinical results [22, 23]. However,
the Eden-Hybinette surgery has a lower risk of neurological sequelae. It is probable that the permanent split of the subscapularis by the conjoined tendon at 90 degrees of abduction, particularly if the tendon is loaded rather than unloaded, accounts for the statistically significant difference in range of motion between the Iliac and Latarjet groups. Patient age, sex, side, shoulder dominance, employment, generalised hyperlaxity, time interval before surgery, number of dislocations, number of dislocations during follow-up, post-operative physiotherapy, and duration of follow-up had no effect on results in either group. Furthermore, our research was limited in its ability to accurately identify the progression of arthropathy because of the short follow-up time [24]. In terms of postoperative stability, there was no discernible difference between the groups. This is consistent with the findings of earlier case series publications [25, 26] that demonstrated the high success rate of stabilisation of both operations even over the long term. Donor site discomfort affected 15%, sensory abnormalities affected 10%, superficial wound infection affected 15%, and an extra pelvic scar affected 15% of those in the ICBGT group, despite the fact that the shoulder-related adverse event incidence was relatively low [27]. CT images taken soon after surgery demonstrated the ICBGT's successful augmentation of the glenoid. In contrast to the Latarjet graft, which is constrained by the size of the patient's coracoid process [28], the ICBGT is restricted by the size of the patient's iliac crest, which provides a greater bone supply. However, the limited duration of our investigation precluded us from detecting more osteolysis and resorption of the iliac boneraft [29].

Conclusion

No Except for the Latarjet group's restricted range of motion (external and internal rotation), there were no clinically or radiographically detectable differences between the two groups. The success rate was high (85% and 90% respectively), which is promising, although the follow-up time was brief. Whether you want to know if the outcomes will hold up over time, you should monitor these patients for longer. Additional research with a bigger sample size is required to definitively identify the elements influencing the result. Patients that have a history of taking part in sports greater compliance with the rehabilitation programme and earlier return to activities compared to individuals who did not participate in sports.

References

[12] Young AA, Walsh G. Oen bony augmentation of glenoid bone loss- The

