Postoperative confusion after anesthesia in elderly patients with femoral neck fracture
Soaad.M.Abo El-Wafa, Ehab.E.Afifi and Amany.N.Fekry
anesthesia and Intensive care Dept., Faculty of Medicine, Benha University
E-mail: soadelalfy86@gmail.com

Abstract
Background: Confusion, a One of the most prevalent issues in medicine is a mental and behavioural condition of diminished understanding, coherence, and ability for reason. The acute confusional condition known as delirium continues to be a leading cause of morbidity and death worldwide. There may be neurological predisposing variables when some older persons of the same age have the same procedure and others do not suffer postoperative delirium. Objectives: The purpose of this research was to evaluate the impact of anaesthesia on cognitive function in elderly individuals with femoral neck fracture. Conclusions: Delirium after hip fracture surgery is a frequent but dangerous complication. Metabolic dysfunction, drug-related issues, stress reactions, and anaesthetic type are all possible contributors. Interventions like anxiety reduction and pharmaceutical medications may be useful, but there is no one-size-fits-all approach to prevention.

Keywords: Postoperative confusion; anesthesia; Elderly patients; Femoral neck fracture.

1. Introduction
One of the most prevalent mental and behavioural states seen in the medical field is confusion, which is characterised by impaired understanding, coherence, and the ability to think [1]. The acute confusional condition known as delirium continues to be a substantial contributor to mortality and morbidity[2]. Mild delirium, or confusion, might be a warning sign for the onset of full-blown delirium [3]. Neurocognitive problems such as delirium and cognitive impairment after surgery might have lasting negative effects [4]. Confusion, anxiety, slurred speech, hallucinations, and a diminished awareness of one's surroundings are all symptoms of delirium, a brief mental disorder [5]. Significant deficits in attention, awareness, and cognition with an abrupt start and variable course describe postoperative delirium [POD]. Most cases of this complication manifest themselves within a week following a surgical treatment, often during the first 24-48 hours after the operation. During the first week after a hip fracture operation, PD affects around 50% of older people. Of them, 75% are diagnosed with hypoactive PD. [6] There may be neurological predisposing variables when some older persons of the same age have the same procedure and others do not suffer postoperative delirium. [7] POD may be a consequence of regional anaesthesia. POD is also significantly impacted by general anaesthesia. POD may be caused by a number of factors, including general anesthesia-related hyperventilation, decreased cardiac output, decreased cerebral blood flow, postoperative hypoxemia, and constricted cerebral vasculature. [8]

The purpose of this research was to evaluate the impact of anaesthesia on cognitive function in elderly individuals with femoral neck fracture.

2. Brain Physiology:
The brain is an organ of nervous tissue that commands task-evoked responses, senses, movement, emotions, language, communication, thinking, and memory [9]. The parts of the human brain are:

The cerebrum: It separated into left and right hemispheres of the brain. The surface of the cerebral hemispheres is wavy and convoluted. Gyri are the ridges that may be seen between the involutions. Sulci is the plural form of sulcus, which refers to the valleys between the gyri. Sulci that go quite deep are known as fissures. The cerebral cortex is the grey matter that covers the outside of both brain hemispheres [10].

Cerebellum: It consists of the deep cerebellar nuclei and the cerebellar cortex. The molecular layer, the Purkinje layer, and the granular layer make up the cerebellar cortex. Cerebellar peduncles are structures that link the cerebellum to the brainstem. Modulating motor coordination, posture, and balance [11] is the cerebellum's major role.

The medulla,pons, and midbrain are all parts of the brainstem. Its position between the base of the brain and the spinal cord is indicated by the number [12].

Cellular Physiology
At New progenitors are generated when neuroepithelial cells divide along the inner surface of the neural tube at the start of forebrain development. These neuroepithelial cells, when they divide, undergo a series of changes and diversifications that ultimately give rise to radial glial cells [RGCs] [13].

RGCs function as progenitors, able to self-renew and give rise to other progenitors, neurons, and glial cells. They help coordinate the migration of neuron cells by establishing connections with the neuroepithelium through their lengthy processes. This allows developing neurons to settle in their final destination before sending out axons and dendrites to take part in synapsis and electrical communication. Glial cells are also formed at the same time as neurons [14], and these glial cells provide a protective niche within which neurons may carry out their tasks.

Well-known functions of glial cells [astrocytes, oligodendrocytes, microglial cells] include maintaining the neuronal extracellular ionic medium, regulating the speed with which nerve signals travel and synapses fire, supporting certain aspects of normal neural development and repair, and so on and so forth [15].

The neuronal cell bodies, dendrites, myelinated and unmyelinated axons, glial cells, synapsis, and capillaries that make up grey matter make up the bulk of the CNS. The layers of neurons that make up the cerebral cortex are part of the brain's grey matter. Myelinated axons make up the bulk of white matter in the subcortical [beneath the cortex] region, which has relatively few cell bodies compared to grey matter [16].

Neurons come in a wide variety of shapes and sizes, but they always have four key components: the cell body, dendrites, axon, and axon terminals [17].

Proteins and membranes are generated in the nucleus of the cell body. This process, known as anterograde transport, involves the movement of proteins along microtubules in the direction of the cell's axons and terminals. Although the axon and terminal axon lack ribosomes, dendrites are able to synthesise certain proteins. Retrograde transport refers to the movement of damaged membranes and organelles back via axonal microtubules toward the cell body. Only within the cell nucleus do lysosomes reside, where they store and destroy any damaged substances that make it through the cell's defences. A neuron's axon is its very thin extension that it uses to communicate with other cells through nerve impulses [9].

Twenty-five percent of the brain's volume is taken up by astrocytes, making them the most numerous glial cell type. You may broadly categorise them as either protoplasmic or fibrous. Gray matter contains protoplasmic astrocytes, which extend in various directions to make contact with synapses and blood vessels. White matter contains fibrous astrocytes, which have long fiber-like processes that make contact with the vascular and node of Ranvier systems. By establishing contacts with blood arteries, astrocytes may regulate blood flow in response to synaptic activity. The blood-brain barrier [BBB] [18] originates from astroglial endfeet, which cooperate with endothelial cells to establish tight connections with the basal lamina.

Myelin, which is produced by oligodendrocytes, is found in regions of the nervous system divided by nodes of Ranvier and plays a crucial role in maintaining and enhancing the speed with which electrical impulses travel. In the central nervous system, their function is similar to that of Schwann cells[19].

Microglia, perivascular macrophages, meningeal macrophages, circumventricular organ (CVO) macrophages, and choroid plexus microglia are all types of macrophages found in the central nervous system. Choroid plexus microglia are the most numerous and well investigated component of the CNS immune and support system [20]. Function The brainstem processes sensory and motor data and is also responsible for our conscious and unconscious actions, emotions, thoughts, and memories. The right hemisphere is in charge of spatial thinking [which finds meaning in the form, size, orientation, position, and direction of objects, processes, or occurrences] whereas the left hemisphere controls speech and abstract thinking [the capacity to think about things that are not really present]. [9].

In the brainstem, the descending motor and sensory neurons switch sides. The crossover of these pathways implies that the left half of the brain is responsible for the motor and sensory processes of the right side of the body, and vice versa. Because of this, motor and sensory abnormalities on the right side of the body are typical after a stroke that affects the left hemisphere of the brain [21].

The thalamus receives information about the external environment from sensory neurons. The thalamus is responsible for relaying the sensory data to the brain. The hypothalamus regulates the body's basic needs, including hunger, thirst, and sleep [22].

The cerebrum is composed of four lobes:

Frontal lobe: Is executive function, attention, memory, emotion, mood, personality, self-awareness, and social and moral reasoning, as well as motor function and language. The frontal lobe is home to Broca's region, which is in charge of language and communication [23].
Parietal lobe: Is responsible for interpreting vision, hearing, motor, sensory, and memory functions [24].
Temporal lobe: The The Wernicke region, which is in charge of deciphering both written and spoken language, is situated here. The temporal lobe plays a significant role in social cognition as well. For the purposes of memory, language, and emotion, it analyses sensory data. It's also crucial for visual, spatial, and auditory perception [25].

The visual cortex, which processes visual data, is located in the occipital lobe [26].
The cerebellum is responsible for voluntary movement coordination. It takes in sensory input from the brain and spinal cord and uses that data to fine-tune the accuracy and precision of the resulting motor activity. It also helps with things like paying attention, communicating, feeling pleasure, and controlling anxiety [27].
The brainstem links the higher brain and cerebellum to the lower brain and spinal cord. Autonomic activities include breathing, temperature regulation, respiration, heart rate, wake/sleep cycles, coughing, sneezing, digesting, vomiting, and swallowing all have their primary centres in the brain [28].

Mechanism
Neurons release neurotransmitters into the synaptic space (a gap between neurons ranging in size from 20 to 50 nanometers) to facilitate communication. Presynaptic neurons are those that release the neurotransmitter into the synaptic space, while postsynaptic neurons are those that take it up. When a presynaptic neuron fires an action potential, calcium enters the cell and triggers the release of neurotransmitters stored in synaptic vesicles. Postsynaptic neurons are affected when a neurotransmitter reaches them and attaches to their receptors. Enzymes work quickly to clear the synaptic space of excess neurotransmitters [29].

Myelin is produced by cells called oligodendrocytes in the central nervous system. The formation of myelin sheaths surrounding axons facilitates the rapid conduction of electrical impulses along the axons. Nodes of Ranvier are gaps in the myelin sheath along the axons. These junctions enable sodium to enter the axon, keeping the electrical impulse moving through the axon at a constant velocity. The "jumping" of electrical impulses from one node to another is termed saltatory nerve conduction and guarantees that electrical signals retain their speed and may travel great distances with little to no signal degradation [30].

3. Changes of brain physiology and cognitive function by aging:

Aging of Neurons
The For the neurological system, keeping cellular metabolism in check is a major issue [31]. The extremely complex architecture of neurons, their finely controlled transmembrane ion gradients, and the continual activity of billions of synapses [32] all contribute to the disproportionately high metabolic cost of executing and sustaining fundamental brain processes. Eighty percent of the energy required for the proper functioning of neural networks is used up during the process of synaptic transmission [33]. Simultaneously, the primary processes of neural plasticity are neurogenesis, synaptogenesis, and synaptic pruning. They are the determinants of how much the brain can learn and remember. The systems of learning and memory are the first to be compromised in the ageing brain because their functioning is so dependent on ATP-controlled glucose-oxygen synergy. [34].

Molecular Alterations in Brain Aging

Aging is an occurrence in nature with several, poorly understood causes. Cells’ complex antioxidant machinery kicks into high gear under physiological circumstances. However, this equilibrium may be disrupted when oxidants are created in excess or when the antioxidant defences are inefficient, leading to oxidative stress, the first step in the pathways that culminate in ageing. Alzheimer's disease, Parkinson's disease, vascular dementia, and many others are neurodegenerative disorders that seem to be more vulnerable in the ageing brain. In order to compile all aspects of brain research and health promotion and prevention, the Special Issue “Physiological or Pathological Molecular Alterations in Brain Aging” [35] was conceived. This issue will collect studies on mitochondrial dysfunction, autophagy, oxidative stress, and inflammation that are associated with brain disorders.

Deterioration of Brain Blood Flow With Age

Due to its very poor oxygen and glucose storage capacity, brain tissue relies on the constant supply of these energy substrates via the CBF [36]. Since ATP is produced only by oxidative phosphorylation, this finding is suggestive of a dual role for the CBF response in increasing glucose and oxygen supply. Glycolysis and the Krebs cycle convert glucose to CO2 and NADH [37], confirming that glucose itself carries a considerable amount of chemical energy per bond. Through oxidative phosphorylation, significant amounts of energy may be liberated from oxygen bonds. Thus, it seems that O2, rather than glucose, NAD[H], or ATP, is the chemical most critical to the
survival of the brain. It has been shown that mitochondrial oxidation of fatty acids may supply only up to 20% of the overall brain's energy needs [38]. Neurons get the oxygen, glucose, and nutrients they need to live and operate from the blood and cerebrospinal fluid that flow throughout the brain. The CSF drains harmful toxins and waste products from the brain and spinal cord. The absence of lymphatic vessels, which would otherwise help remove interstitial metabolic waste products, is peculiar to the central nervous system. The lymphatic system [39], a glial-dependent perivascular network that provides a pseudolymphatic role in the brain, was discovered via recent research.

Motion
Brain plasticity refers to the brain's flexibility in responding to changes in its internal or external environment. The ability of neurons to alter local and global connections and strength links between them is crucial to the brain's adaptive capacity. One of the physiological basis of training and learning is long-term potentiation of the effectiveness of transmission at the synaptic level. Both presynaptic and postsynaptic processes are at play in this occurrence, and some of these pathways have been linked to physical exercise [40]. Retrograde protein transport, mRNA-protein complex formation, and microtubule-mediated protein transport are all influenced by calcium waves generated by calcium-induced calcium release (CIRC) from the endoplasmic reticulum [41].

Relation
Studies have shown that there may be direct and indirect processes by which healthy social relationships might slow the onset of cognitive decline and even reverse its effects [42]. Empirical research using MRI, voxel-based morphometry, and extensive stereological analysis have shown that bigger social networks are associated with a higher volume of the orbitofrontal cortex and the amygdala, lending credence to the significance of social interactions to cognitive function. White matter lesions are also more common in those who are more outgoing socially, inactive [43].

Passion
Recent Studies show that older persons who engage in meaningful pastimes report higher levels of happiness and passion when compared to those who do not [44]. To elaborate, "passion" is "a strong emotion toward a personally significant value/preference that stimulates intents and actions to convey that value/preference" [45]. Following one's interests and developing one's skills are crucial to keeping one's mind sharp and healthy. Deliberate practise, in which one actively engages in an activity with the intention of improving performance, is crucial, but it is also consistent with the principles of brain plasticity [i.e., use it or lose it, repetition]. Previous research has linked enthusiasm to increased well-being and productivity in the workplace [45], as well as more intentional practise among football players [46].

4. Confusion and delirium after surgery:
The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), published by the American Psychiatric Association, defines delirium as a condition characterised by the following five symptoms: impairment in attention and awareness; onset within a few days; fluctuating severity over the course of a day; an additional cognitive impairment; and an absence of other explanatory factors.

Epidemiology
Postoperative delirium (POD) is a neurological complication that affects 4–53% of elderly patients who have hip fracture surgery. POD is linked to higher rates of death, longer periods of cognitive deterioration, and a greater financial burden on healthcare systems [47]. Postoperative delirium affects around 10–20% of people older than 60-70 years [4]. Between 15% and 54% of patients after non-cardiac surgery will have postoperative depression, according to DSM-5. Seventy to eighty percent of the ICU population will experience this at some point throughout their stay. The rate is comparable in patients undergoing cardiac surgery, ranging from 26% to 52% [48].

The risk of developing postoperative delirium is 1.5-3 times greater in patients who have emergency surgery compared to those who undergo elective procedures. surgery[49].

Risk Factors
The occurrence of POD has been demonstrated to be linked to a number of perioperative risk factors, according to randomised studies. Clinical decision making and the identification of high-risk patients may benefit from an understanding of risk factors [50].

POD arises due to a combination of factors. Multiple intrinsic and extrinsic components, in addition to its core etiological causes, promote POD development. Hypothalamic syndrome, infection, electrolyte abnormalities, fever, and copious urine are all potential triggers for postoperative depression in neurosurgical patients. POD was also shown to be more common among ICU patients whose hospitalizations lasted for longer [51].

Pathological Theories
Five POD is characterised by disruptions in attention, consciousness, and cognition, which may be explained by the prevalent pathogenic hypotheses shown in Figure 1A. and increases BBB permeability [50].

Classification

Hyperactive delirium, hypoactive delirium, and mixed delirium are the three subtypes of this condition. Hypoactive delirium is characterised by lethargy, reduced mobility, and slower mental activity [52], whereas hyperactive delirium is defined by hypervigilance, agitation, and restlessness in patients.

A subgroup of delirium known as "postoperative delirium" exists apart from the more accurately named "emergence agitation" or "emergence confusion" [Figure 2]. Patients who have had surgery requiring general anaesthesia or sedation may have delirium for a variety of reasons, and the phrase "postoperative delirium" has been used to characterise this condition regardless of its aetiology or timing [53].

Several types of mental examinations exist: The mini-mental test is a well-known and reliable cognitive assessment tool, however it is not always easy to administer. The Rapid Cognitive Screening Test and the Six-Item Cognitive Test, on the other hand, are useful, practicable, and time-efficient in the surgical ward settings [57]. In a controlled environment, many methods have been refined to assist identify delirium. The Confusion Assessment Method (CAM) is a popular diagnostic technique. [58]

For delirium to be present, one must see both of the following: [59]

1. A sudden and erratic shift in one's mental state
2. Distraction (having trouble staying focused or keeping up in a discussion).
3. Having trouble keeping thoughts straight (due to memory, orientation, or language issues)

Fourthly, a change in one's state of mind (whether it be heightened alertness, extreme sleepiness, or a complete lack of awareness).

Control and Safety Measures

Several surgical problems have been treated using the risk assessment, risk reduction, and rescue therapy approach that has emerged alongside improved recovery pathways [Fig. 4]. [60].
Preoperative pain management
Several The incidence of postoperative delirium is increased in patients who had pain before surgery, according to observational studies [62]. Preoperative use of the fascia iliaca block for neck of femur fracture was the subject of a systematic review by Steenberg and Moller; the authors found two relevant trials, and the pooled data show that fascia iliaca block lowers the risk of delirium. The risk of delirium may be decreased if a femur fracture is treated quickly [63].

Preventing Delirium Without Drugs
An older person's physical, psychological, and functional capacities are all evaluated during a complete geriatric assessment [CGA] in order to create a unified treatment and monitoring strategy [64].

Care was delivered on an orthopaedics or geriatrics ward and included a multidisciplinary approach to patient treatment. In the HIP ATTACK study, patients who had accelerated hip fracture repair surgery (defined as the objective of surgery within 6 h of diagnosis) had a 3 percent absolute risk decrease in postoperative delirium.

Preventing Delirium with Drugs
In a systematic review of randomised trials, second-generation antipsychotics were found to reduce the incidence of postoperative delirium compared to placebo. However, the largest of these trials also found that second-generation antipsychotics were associated with longer duration and greater severity of symptoms when delirium did occur. Pineal gland-secreted melatonin has a role in controlling the body's sleep-wake cycle [66].

Canadians now have no access to Ramelteon, a selective agonist for both types 1 and 2 of the melatonin receptor. The likelihood of postoperative delirium was shown to be reduced when melatonin or ramelteon were given to patients after surgery. Therefore, there is not enough data to recommend using melatonin or ramelteon routinely for the prevention of postoperative delirium [67].

Treatment After Surgery
Acute pain, infection, fluid loss, acid-base imbalance, and inability to pee are all potential complications of POD that must be addressed first. The PINCH ME method provides a hint for directing the care of delirious patients in the emergency room [68].

P = agony I = sickness/drug overdose
Where N is nutrition and C is a lack of bowel or bladder control.

Hydration/oxygen saturation = H.

M --> meds

Environment = Potential Dangers
The clinical therapy of delirium may be broken down into two main groups: non-pharmacologic and pharmaceutical. Both strategies for preventing and treating delirium focus on eliminating the underlying factors that contribute to the condition [69].

Non-Pharmacological
Pharmacological treatments are not recommended as first-line therapy in either non-intensive or critical care settings, according to the actual recommendations [70].

Burton et al. draw their conclusion that nonpharmacological approaches are helpful for treatments of POD in the non-intensive unit care area based on information from the Cochrane database of systematic studies. Reorientation, improved sleep, hearing and visual optimization with aids, early mobility, sufficient hydration, infection prevention, pain management, and evaluation are all part of the toolkit [71].

Pharmacological
Medication Therapy There is a lack of pharmacologically based treatments for postoperative delirium, and those that do exist are only used after careful consideration of their potential negative effects. Drug-based therapy for POD is not appropriate for all patients and is reserved for those who have not
shown improvement with non-pharmacological methods [72]. Although many medications have been tried over the years for postoperative delirium, only a select number have been successful [73].

Delirium after Surgery: The Results Particularly in the elderly, preventing and treating postoperative delirium is crucial to regaining normal cognitive function following surgery. After one month has passed after major surgery, individuals who suffer postoperative delirium recover faster than those who do not [55]. In addition, individuals over 65 who have postoperative delirium are at increased risk for developing cognitive impairment. Postoperative delirium, however, may potentially cause a delay in cognitive recovery in younger patients up to 90 days after surgery [74].

The recovery after surgery may be slowed and cognitive impairment can occur, although other writers point out that postoperative delirium might also promote compliance with postoperative care. Cations after surgery and mortality rates [75].

5. Conclusion
The Previous meta-analyses have emphasised the influence of postoperative delirium on the short- and long-term mortality of patients who have had hip fracture surgery. POD has many causes that include metabolic malfunction, pharmacological interactions, stress reactions, and anaesthetic technique. POD may be affected by both regional and general anaesthesia, with the latter possibly leading to hyperventilation, decreased blood flow, and postoperative hypoxia. Different patterns have been shown to be connected with delirium susceptibility, and advanced MRI-based brain phenotyping has shed light on these structural linkages. Preoperative anxiety for elective orthopaedic surgery has predictive validity, recommending that efforts be made to reduce anxiety in order to avoid POD. Drugs including dexmedetomidine, antipsychotics, and sedatives have all been investigated as potential treatments for delirium prevention.

References

[22] Demenko MM, Harbuzova VY, Obukhova OA. Physiology of sensory systems. 2022;

[65] Leung FKL, Fang CX, Yee DKH. Accelerated surgery versus standard care.
[68] Dixon M. Assessment and management of older patients with delirium in acute settings. Nurs Older People. 2022;34(5).