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Abstract: 

Many coastal areas, especially in developing countries or those with limited marine activity, lack detailed depth 
measurements. Past data in these areas may be incomplete or outdated, making it difficult to create accurate seafloor 
maps. This is important for the preliminary design of coastal structures. This study aims to explore the best way to use 
satellite images and open-source software to create Satellite-Derived Bathymetry (SDB) models. Our approach uses 
three machine learning algorithms (KNN, RF, MLR) to analyze satellite images of different areas. The images come 
from open-source databases. We use the closest truth data to the targeted area to train the algorithms to predict the 
unseen data. Our research shows that using satellite data to measure water depth can accurately determine depths of 
up to 27 meters. Furthermore, our assessment reveals mean absolute errors averaging 0.72 meters and root mean square 
errors averaging 1.0 meter, with accuracies around 94.6% for both samples. Random Forest (RF) performed better 
than KNN and MLR. In Sample El-Dabaa, RF performed well with Landsat-08 Single Scene image. The area has 
rocky cliffs with seagrass, steep slopes, and strong wave movement. In Sample El-Arish, RF's best results came with 
single scene image from Landsat-08. This area has sandy soil, gentle slopes, and gentle wave movement. Generally, 
usage of Single Scene image or Median Value image with ML algorithm depends on the seafloor dynamics. 
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1. Introduction: 

Several coastal zones, particularly those in 
developing nations or with minimal marine traffic, are 
deficient in precise depth surveys. The deficiency in 
previous data within these regions might be 
insufficient or antiquated, as evidenced by online 
Admiralty charts, particularly in certain sections of the 
map close to the shoreline in shallow water. Posing 
challenges in generating precise maps of the seabed. 
In the initial design of buildings such as breakwaters, 
piers, and harbours, it is very important to have 
accurate depth measurements. These depths provide 
information on the sediment distribution, underwater 
topography and probable threats that may occur, 
which allows the designing of resilient structures to 
coastal dynamics, wave action, and sediment transport 
processes by the construction engineer. Moreover, 
knowledge concerning depths spatial distribution is 
required for evaluating stability and durability of 
structures locating along the coast against such 
influences as scouring, sedimentation, and sea level 
rise. Consequently, through integrating the correct 
data on how deep different areas are, constructors 
provide that structures on shores serve their purposes 
within a long time in safe conditions leading to 
endurance of coasts and continuity of growth that does 

not harm the environment. Traditional approaches 
towards the estimation of shallow water depth have 
been limited by several compromises and constraints. 
There exist restrained geological spreads for 
conventional approaches like ship-based surveys and 
aerial Laser Imaging, Detection, and Ranging 
(LiDAR) [10]. The limitation of conventional methods 
is that they are both slow and labour intensive hence; 
they cannot be applied globally [8,11]. Consequently, 
new methods have evolved that use satellite data to 
generate bathymetric charts [12,13]. Land-viewing 
sensors might not always have excellent spatial 
resolution when it comes to oceanic pixels located 
near shorelines whereas land-viewing sensors may not 
have great rates in terms of time leading to fewer 
number of satellite images which are cloud-free 
although this may particularly occur more often in 
areas such as rainy coastal tropics where cloudiness is 
frequent and high [7]. 
Moreover, bathymetric algorithms based on satellite 
telemetry, often draw on field data calibration 
[8,9,11,16,17] or a large number of calculations aimed 
at physically modeling general properties of the water 
column [10,12,13,14,15,18,19], and are frequently 
restricted to a single scene portrayed in either 
multispectral or hyperspectral images taken by space 
orbiters. Estimation of shallow water bathymetry 
confronts multiple challenges which are meticulously 
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taken care of through implementation of Machine 
Learning Algorithms and Open-Source Datasets. 
There is one of them - Google Earth Engine (GEE), 
conceived as a powerful cloud-based computational  
platform that allows easy access to high-coverage  

global-scale analysis-ready satellite reflectance 
datasets. GEE has facilitated many global-scale 
products such as land  cover, forest change, water 
surface extent and urban land use [20,21]. Specifically, 
Landsat-08 surface reflectance dataset in GEE is 
heavily employed in terrestrial environment 
studies[6]. Despite this fact, it is not entirely clear 
whether the Landsat-08 dataset in GEE is suitable for 
direct performance of shallow water bathymetry. 
Moreover, Machine learning techniques are very good 
at discovering complex patterns within high 
dimensional datasets, by utilizing advanced 
mathematical approaches to detect the correlations 
which could be difficult for man to notice. By 
employing sophisticated models like Random Forest 
algorithm as well as ensemble techniques, they are  

able to grasp non-linear relationships between 
different attributes improving on their ability to make 
precise predictions. In this research paper we have 
come up with a fresh technique of shallow water depth 
mapping using Google Earth Engine, Machine 
Learning Algorithms within the coastlines’ marine 
habitats based on field data close to the point of 
observation. This study tries to create a useful and 
reliable way of mapping bathymetry that takes into 
account seabed features.  
2. Material and Methods: 
2.1 Study Sites and Data: 
We tested our bathymetric mapping method across the 

Egyptian Mediterranean Shoreline and choose two 
samples that represent the most geomorphology 
(Sandy bed, Rocky cliffs bed) of the shoreline 
regarding a Paper was published [4]. in addition to the 
slope of the seabed and the waves movement in these 
areas. One of the Samples is EL-Dabaa Area. The 
Seabed features in this area are about Rocky cliffs, 
Steep Slope, High Waves movements and partially 
distributed seagrass into the sample called Posidonia 
oceanica[5]. On the other hand, there is another 
sample in El-Arish. The seabed features in EL-Arish 
are about sandy soil, gentle slope and gentle wave 
movements.  
Our Ground Truth Data that we use to validate the 
Method is bathymetry data collected and referred to 
the Chart Datum called Lowest- Astronomic Tide 
(LAT). These seabed depth maps are often used in 
coastal design and ship-navigation. We have around 
247,256 depth points in both samples. 
2.2 Satellite Imagery: 
 Open-source satellite imagery, such as Landsat-8, is 
commonly utilized in remote sensing analyses, but 
requires correction before use. These corrections 
include geometric, atmospheric and radiometric 
corrections, with an additional option for cloud cover 
adjustment regarding specific applications[3]. Fortu-
nately, Google Earth Engine (GEE) platform offers 
geometric, radiometric corrected Landsat-8 images 
("LANDSAT/LC08/C01/T1-SR") with customizable 
cloud cover selection[1]. Utilizing GEE, users can 
download single scene images with cloud cover less 
than 10% closely aligned with observed in-situ data, 
as well as median value images over a three-month 
period encompassing the in-situ observation time. 
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2.3 Machine Learning Algorithms and Bathymetry 
Estimation Method: 

 Machine learning (ML) is increasingly recognized as 
a valuable research tool for practitioners in GIS and 
remote sensing, providing enhanced flexibility in 
processing vast datasets. ML techniques have garnered 
widespread adoption within the remote sensing 
community, particularly in the processing of 
longitudinal high-resolution satellite data and/or 
datasets accompanied by high-resolution in-situ 
observations. The few of the studies on satellite-
derived bathymetry using ML algorithms have been 
shown in article review with details of algorithm and 
accuracy achieved [3]. We use three of the most often 
machine learning algorithms to detect the depth. They 
are Random Forest (RF), K-Nearest Neighbourhood 
(KNN), and Multiple Linear Regression (MLR). 
Random Forest (RF) is a versatile and widely used 
machine learning algorithm known for its ability to 
handle complex datasets and provide robust 
predictions by aggregating multiple decision trees . 
Multiple Linear Regression (MLR) is a classic 
statistical technique used to model the relationship 

between a dependent variable and multiple 
independent variables, providing insights into the 
linear associations between them. K-Nearest 
Neighbors (KNN) is a simple yet powerful machine 
learning algorithm that classifies data points based on 
the majority vote of their nearest neighbors, making it 
particularly effective for classification tasks in both 
supervised and unsupervised learning scenarios.  
Our proposed methodology for bathymetry estimation 
comprises two stages. Initially, we identify the most 
suitable machine learning (ML) models that 
demonstrates reliable performance. Subsequently, we 
partition the dataset into two subsets: 30% for training 
the ML model and generating a predicted bathymetry 
map for the designated area, while the remaining 70% 
of the dataset serves as unseen data for the model 
evaluation. The training ML and testing process is  
made with help of open-source Gui available online on 
Git-hub platform that use mixture of open-source 
python libraries [23].  
 

Table (1) overview of In-situ Data Features 

In-situ Data El-Arish El-Dabaa 

Observation time 23-08-2021 26-04-2019 

Depth Points 168,385 77,922 

Depth Range 15 m 27 m 

Water Chart Datum LAT LAT 

Grid 5x5 m 10x10 m 

Datum WGS-84 WGS-84 

Projection UTM Zone 36N UTM Zone 35N 

Sea Albedo Sand Rocky cliffs with seagrass 

  

Table (2) shows the characteristics of satellites images and depth points used in training and test 

Samples El-Arish El-Dabaa 

Satellite Images Single Scene Median Value Single Scene Median Value 

Landsat-08 
Satellite 
Imagery 

Acquisition Date 01-07-2021 21-06-2021  
to 

 21-09-2021 

28-04-2019 21-03-2019  
to 

 21-06-2019 

Cloud Cover Less 10% Cloud-free Less 10% Cloud-free 

Spatial Resolution 30 m 30 m 30 m 30 m 

Projection UTM Zone 
36N 

UTM Zone 
36N 

UTM Zone 
35N 

UTM Zone 
35N 

Datum WGS-84 WGS-84 WGS-84 WGS-84 

ML Validation 
(Stage Two) 

Training depth 
Points 

21,690 21,690 50,966 50,966 

Unseen Depth Points 56,232 56,232 117,419 117,419 
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2.4 Validation: 

Table (3): shows the ML equations and parameters that have been used  

ML Algorithms Equation Parameters 

Random Forest 
(RF) 

 

Number of Trees (300), Criterion (MSE), Bootstrap (True), 
Random state (0) 

K-Nearest Neigh- 
bourhood (KNN) 

 

Number of neighbours (5), Weights (Distance), Leaf Size (30) 

Multiple Linear 
Regression (MLR) 

 

Fit Intercept (True), Normalize (False), Copy X (True) 

 
Table (4) Overview of the statistics accuracy metrics 

Accuracy Metric Mathematical Formula 

RMSE 
 

MAE 
 

 R2 

 

Where: 
 𝑛 is the number of observations, 
 𝑦𝑖 is the actual value of the dependent variable for observation 𝑖, 
 𝑦^𝑖 is the predicted value of the dependent variable for observation 𝑖, 
 𝑦ˉ is the mean of the observed values of the dependent variable. 

 

 

 Fig(3): Flow Chart displays the Stage One Process 

 Fig(4): Flow Chart displays the Stage Two Process 
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Now, we have generated a predicted bathymetry map 
for the unseen data, it is imperative to assess the 
accuracy of these maps to evaluate their reliability. 
This involves extracting the predicted depth points 
from the generated map and comparing them with the 
corresponding ground truth data in the 70% unseen 
dataset through manual validation. we used statistical 
equations that are often used [3]. We use Root Mean 
Square Error (RMSE), Mean Absolute Error (MAE) 
and R-Squared (R2). RMSE measures the average 
deviation between predicted and actual values, giving 
more weight to larger errors due to squaring. It's 
important because it provides a measure of the model's 
accuracy in predicting numerical outcomes, with 
lower RMSE indicating better performance.   
 In addition, MAE calculates the average absolute 
difference between predicted and actual values, 
providing a direct measure of prediction error. It's 
important as it offers a straightforward assessment of 
model performance, unaffected by the direction of 
errors, making it easy to interpret. R2 quantifies the 
proportion of the variance in the dependent variable 
that is predictable from the independent variables in a 
regression model. It's important because it indicates 
how well the independent variables explain the 
variability of the dependent variable, with higher 
values suggesting a better fit of the model to the data. 
3. Results: 
3.1 (Stage One) Validation of the proposed ML 

models: 
After  training the selected ML models on all In-situ 
data and all satellite images for both samples, we 
found that for the El-Arish area, KNN and Random 
Forest (RF) models exhibit high R2 values close to 
0.996, in addition to lower RMSE and MAE indicating 
strong predictive performance, while the Multiple 
Linear Regression (MLR) model shows lower R2 
values and high RMSE and MAE Similarly, for the El-

Dabaa area, KNN and RF models demonstrate 
excellent performance with R2 values around 0.996, 
whereas MLR exhibits slightly lower R2 values and 
too higher values of RMSE and MAE. So, we decide 
to use KNN and RF models for further evaluation on 
Unseen Data.  
3.2 (Stage Two) Validation of the best-fit models on 

Prediction Unseen Data:  
In our methodology, 30% of the in-situ data was 
partitioned for model training, whereas 70% was set 
aside for manual validation of model predictions on 
unseen data. As shown in Table (5), the Random 
Forest (RF) model consistently performed well across  
different samples and conditions. Notably, for the El-
Arish Area and El-Dabaa, utilizing the Single Scene 
image yielded superior results compared to the Median 
Value image, while for the El-Dabaa Area, the Median 
Value image exhibited excellent performance solely 
with the both models rather than the median value 
image of El-Arish. Therefore, for broader application 
in SDB (Shallow Depth Bathymetry) tasks, the RF 
Algorithm is recommended as the best-fit ML model. 
Additionally, regarding the selection of satellite 
imagery, it is advisable to experiment with both Single 
Scene and Median  Value images in your specific 
application and opt for the most effective option. 
Exploring the discrepancies observed in the El-Arish 
Area and EL-Dabaa Area, characterized by  
significant sedimentation and seagrass movements,  
revealed that the Single Scene image outperformed the 
Median Value image. Conversely, in the El-Dabaa 
Area, spatial analysis of absolute value of predicted 
depth errors that are greater than RMSE, particularly  
significant around seagrass areas, suggests a potential 
need for classifying sea albedo into seagrass and rocky 
cliffs. This could involve training ML models 
separately on each class or employing more advanced 
ML techniques such as Artificial Neural Networks [3]. 

Table (5) Stage One: displays the validation parameters used during the training of machine learning models to 
select the Best-Fit Models for testing  on Unseen Data 

Samples ML  
Models 

Landsat-08 

Single Scene Median Value 

R2 RMSE MAE R2 RMSE MAE 

El-Arish KNN 0.995 0.188 0.116 0.996 0.185 0.115 

RF 0.996 0.175 0.109 0.996 0.173 0.108 

MLR 0.817 1.188 0.937 0.870 1.000 0.746 

El-Dabaa KNN 0.996 0.427 0.300 0.996 0.434 0.302 

RF 0.996 0.425 0.298 0.996 0.421 0.297 

MLR 0.759 3.231 2.677 0.844 2.600 2.154 

 



54                   Exploring Best Practices in Machine Learning Approaches for near-shore bathymetry modeling 
 

 Benha Journal Of Applied Sciences, Vol. (9) Issue (5) (2024 ) 

4. Discussion: 
Our investigation uncovered notable disparities in 
model effectiveness. In the El-Arish Area, employing 
Single Scene imagery outperformed the use of Median 
Value imagery, possibly due to substantial 
sedimentation in the region. Similarly, in El-Dabaa 
Area, which exhibited characteristics similar to El-
Arish Area owing to seagrass dynamics, the Single 
Scene image provided a more accurate portrayal of the 
evolving seabed landscape . 
The El-Dabaa image demonstrated outstanding 
performance, Residual Analysis of predicted depth 
errors highlighted significant discrepancies, 
particularly around seagrass habitats, suggesting the 
potential for refining model training by classifying sea 
albedo into distinct categories such as seagrass and 

rocky cliffs. This finer classification could enhance 
model accuracy and better capture underwater terrain 
complexities. 
To address these challenges, future research endeavors 
could explore advanced machine learning techniques 
like Artificial Neural Networks (ANN) to enhance 
bathymetric model predictive capabilities. 
Furthermore, ongoing experimentation with various 
satellite imagery types, including both Single Scene 
and Median Value images, will be pivotal for 
optimizing model performance across diverse 
underwater landscapes. Overall, our findings 
underscore the importance of considering site-specific 
characteristics and selecting appropriate modeling 
approaches to effectively address the complexities of 
bathymetric estimation in shallow depth areas. 

Table (6) Stage Two: presents the validation metrics for the best-performing machine learning models on unseen 
test data. 

Samples Best-fit 
ML 

models 

Landsat-08 

Single Scene Median Value 

R2 RMSE MAE R2 RMSE MAE 

El-Arish KNN 0.919 0.771 0.595 0.870 1.080 0.790 

RF 0.924 0.779 0.580 0.901 0.931 0.700 

El-Dabaa KNN 0.964 1.337 0.924 0.947 1.595 1.081 

RF 0.967 1.229 0.850 0.946 1.427 0.861 

 

 ve at hathh points Dabaa Area wit-Showing El 5)Fig(
RMSEn greater thavalue error  
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5. Conclusion: 
Overall, this research has shed light on the SDB 

and the usage of ML Algorithms with in-situ 
Calibration. We found that: 
1- Random Forest Algorithms can rely on in 

most SDB conditions.  
2- Usage of Single Scene image or Median 

Value image with ML algorithm depends on 
the seafloor, so you may test both for the 
area of interest then choose the best-fit 
image. 

3- Variance in sea albedo requires deep 
learning algorithms like (ANN) or separate 
the image to different category then predict 
each category separately  . 
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