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Abstract 

The Serial Peripheral Interface (SPI) is a widely used synchronous serial communication bus that facilitates 

communication between a master device, and one or more subordinate devices, referred to as slave devices. This 

article outlines the conceptualization and design procedures of an interface for the SPI communication bus on a 

Field Programmable Gate Array (FPGA) platform, using the LabVIEW programming environment alongside the 

LabVIEW FPGA module. The structure and operation of the SPI communication bus are presented, along with 

its timing structure and four distinct operational modes. The implementation of SPI bus communication on the 

FPGA is achieved via the use of the state machine methodology. With the state-machine SPI technique, multiple 

devices can be managed simultaneously through a single port. Additionally, the clock frequency can be adjusted 

online, making the system adaptable and flexible for different tasks. LabVIEW is used to implement the SPI 

module circuit, which is then mapped onto the National Instruments Single-Board (NI SbRIO-9631) FPGA board.  

The L3G4200D gyroscope sensor is used to conduct testing on the protocol and verify the effectiveness of the 

state machine technique. The results of this study demonstrate the successful implementation of the SPI 

communication bus interface on an FPGA using LabVIEW and LabVIEW FPGA module. The module exhibits 

versatility, efficiency, and the ability to communicate with a wide range of devices.  
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1.  Introduction  

The Serial Peripheral Interface (SPI) is a 
synchronous serial interface technology first 
introduced by Motorola. The SPI bus is physically 
implemented by a module on a microprocessor control 
unit (MCU) connected to a peripheral microcontroller 
(PIC micro), which allows the MCU to perform high-
speed data communication with various peripheral 
devices in full-duplex synchronous serial mode [1]. In 
mechatronics applications, FPGAs are often used to 
control sensors, actuators and other devices that 
perform various tasks. To communicate with these 
devices, microcontrollers need to use protocols that 
define how data is exchanged [2,3]. SPI is one of many 
serial buses that has several advantages over other 
widely used buses, such as the I2C, CAN, and USB. 
For example, an SPI bus can transmit data at several 
Megabytes per second (Mbps) faster than other serial 
buses. This paper discusses the structure, operation, 
timing structure and four operational modes of the SPI 
communication bus [4]. 

In addition to the SPI conceptualization and design 
procedures outlined in this paper, the utilization of the 
SPI offers several notable advantages for 
communication within embedded systems. The SPI 
protocol provides a straightforward and efficient means 
of data exchange between a master device and multiple 
slave devices, enabling seamless integration and 
communication across diverse hardware components.  

One significant advantage of employing SPI is its 
inherent simplicity and flexibility, making it ideal for a 
wide range of applications in embedded systems. With 

its synchronous serial communication architecture, SPI 
facilitates high-speed data transfer while requiring 
minimal hardware resources, thereby optimizing 
system performance and resource utilization. 
Moreover, the implementation of SPI communication 
on a Field Programmable Gate Array (FPGA) platform, 
as demonstrated in this study, offers additional benefits. 
By leveraging the state machine methodology and the 
capabilities of LabVIEW alongside the LabVIEW 
FPGA module, developers can achieve robust and 
flexible SPI interfaces tailored to their unique 
application needs. 

Overall, the successful implementation of the SPI 
communication bus interface on an FPGA using 
LabVIEW and LabVIEW FPGA module underscores 
the versatility, efficiency, and effectiveness of SPI in 
facilitating seamless communication and integration 
within embedded systems. These advantages make SPI 
a compelling choice for a wide range of applications, 
including sensor interfacing, communication with 
peripherals, and control systems design.  

2.  SPI Protocol Overview 

The SPI bus is a four-wire synchronous serial bus 
commonly used to communicate between a master 
device and one or more slave devices [5]. The master 
device controls the communication by generating the 
clock signal (SCLK) and selecting the slave device to 
communicate with using the chip select (CS) signal. 
The SPI bus uses an 8-bit serial shift register in the 
master and slave devices. Data is transmitted on the 
MOSI (Master Out Slave In) line from the master to the 
slave, and data is received on the MISO 
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(Master In Slave Out) line from the slave to the master. 
The data is transferred one bit at a time and 
synchronized to the SCLK signal [6]. 

The SPI bus has four essential signal lines: 

• CS (Chip Select): This line is used to select the slave 
device for communication. The signal is typically 
active low, so pulling it low will select the slave 
device. 

• SCLK (Serial Clock): This line synchronizes the data 
transfer between the master and slave devices. 

• MOSI (Master-Out-Slave-In): This line transmits 
data from the master to the slave. 

• MISO (Master-In-Slave-Out): This line receives data 
from the slave to the master. 

2.1. SPI Bus Working Principle 

The SPI bus is in idle state when there is no data 
transferred between the master and the slave. The 
master initiates communication by enabling the chip 
select (CS) signal and sending the clock signal over the 
(SCLK) line. Data is simultaneously transmitted 
(shifted out serially from the master onto the MOSI 
line) and received (from the slave's MISO line) on the 
rising or falling edge of the clock signal, depending on 
the clock polarity (CPOL) and clock phase (CPHA) 
settings [7]. The data transfer process is completed 
when the master returns the SCLK line to the idle level 
and the CS line to the inactive state. The SPI 
master/salve interface is illustrated in figure 1.  

 

   Fig. (1) SPI bus structure with master and slave. 
 

The CS line carries the signal that initiates the 
communication of the corresponding slave. The SCLK 
line carries the clock signal that synchronizes the data 
transfer between the master and the slave. The MOSI 
line carries the master output signal with the data to be 
transmitted to the slave. The MISO line carries the 
slave output signal with the data received from the 
slave. The CPOL and CPHA settings determine when 
the data is shifted from the master and when the slave 
samples it. The CPOL setting specifies the idle state of 
the SCLK line, while the CPHA setting specifies when 
the data is shifted out from the master relative to the 
rising or falling edge of the SCLK line [8]. 

The SPI bus working principle is summarized as 
follows: 

1) The host sets the SCLK output to an idle level, the 
CS line is pulled high to an inactive state, and the 
SPI bus is idle when there is no data to be transferred 
between the master and the slave. 

2) The master initiates communication by pulling the 
CS line low. 

3) The master then sends the clock signal (SCLK) line. 
4) The data is shifted out serially from the master onto 

the MOSI line and received on the slave's MISO line 
on the rising or falling edge of the SCLK line, 
depending on the CPOL and CPHA settings. 

5) The data transfer process is completed when the 
master sends the last bit of data and returns the 
SCLK line to the idle level. 

6) The master then pulls the CS line high to de-select 
the slave. 

2.2. SPI Clock Specifications 

The SPI clock signal has two parameters: clock 
polarity (CPOL) and clock phase (CPHA) as shown in  
figure 2. The CPOL parameter controls the level of the 
clock signal idle state. In contrast, the CPHA parameter 
controls whether data is sampled on the falling or rising 
edge of the serial clock. The following table shows the 
four possible combinations of CPOL and CPHA [9,10].

 

Table (1) Four Combinations of CPOL and CPHA 

SPI Mode CPOL CPHA CPOL in Idle State Sample and/or shift data 

0 0 0 Logic Low Data sampled on the rising edge and shifted out on the falling edge 

1 0 1 Logic Low Data sampled on the falling edge and shifted out on the rising edge 

2 1 0 Logic High Data sampled on the falling edge and shifted out on the rising edge 

3 1 1 Logic High Data sampled on the rising edge and shifted out on the falling edge 

 

 

Fig (2) SPI timing diagram 
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3.  Software Design of SPI Bus  Communication 
The software design of SPI communication bus 

interface is implemented using LabVIEW and 

LabVIEW FPGA modules.  

The main tasks of the SPI master module are to: 

• Receive the necessary commands from the host to 
execute the relevant code blocks. 

• Generate the clock signal based on the CPOL and 
CPHA parameters to ensure synchronization. 

• Set the CS line logic low to start transmission and 
high to stop it. 

• Receive 8-bit parallel data from the host, convert it 
to serial data, and then send the bits one a time to the 
slave over the MOSI line. 

• Obtain parallel data from the slave, convert it to 
serial data, and output it through the MISO line one 
bit a time. 

 
The SPI module consists of three main Virtual 

Instruments (VIs): the Host Application Program 
Interface (API), the FPGA Multiplexer VI, and the SPI 
Engine VI. The Host Interface is responsible for 
communication between the host PC or real-time 
controller and FPGA. The FPGA Multiplexer is 
responsible for routing the data between the host and 
SPI Engine. The SPI Engine is responsible for applying 
the SPI protocol sequence to the hardware. Both the 
FPGA Multiplexer and the SPI Engine are 
implemented on FPGA using two parallel loops to take 
advantage of the parallel processing capabilities of the 
FPGA. This allows the SPI module to achieve high data 
transfer rates [11,12]. 

3.1. Host Application Program Interface 

The host API is a LabVIEW interface to the SPI 
communication that simplifies data transfer between a 
host PC or real-time controller and the FPGA 
multiplexer, figure 4 shows the operating sequence of 
this VI. This API consists of two VIs: 

• The (SPI_Configure) establishes the port to be used, 
along with the SCLK rate, CPOL, CPHA, and CS. 
The Configure command passes this data to the 
FPGA multiplexer and stores it in the global variable 
of the FPGA. 

The( SPI_Write/Read) takes the number of bits 
transferred to/from the specified port. The Write/Read 
command passes the written/read data to/from the 
FPGA multiplexer target-scoped FIFO. 

3.2. Field-Programmable Gate Array Multiplexer  

This Virtual Instrument consists of a state machine 
that manages the handshaking between the host and the 
FPGA and multiplexes data to the correct port. The host 

is responsible for determining the state that the 
multiplexer should execute. The multiplexer initially 
sits in idle state, waiting for a start command from the 
host. When the start command is received,  the 
multiplexer then checks the command sent from the 
host. If the command is "Configure", the CPOL, 
CPHA, and CS values are written to global variables to 
prepare for the following data transfer. If the command 
is "Write/Read SPI", data received from the host is 
passed to a target-scoped FIFO, then transferred to the 
VI-scoped FIFO to be passed to the SPI engine in the 
Write and Read states. 

3.3. SPI Engine  

A state machine is an excellent choice for 
implementing the SPI protocol because the protocol has 
a specific order in which bus transitions occur [13]. 
Each state completes one part of the communication 
before moving on to the next step in the proper order, 
figure 5 shows the operating sequence of this VI. 

The following are the steps involved in the SPI state 
machine: 

1)  The state machine initiates when receiving a start 
command from the FPGA multiplexer, writing the 
configuration parameters to be passed to 
corresponding states. 

2)  The state machine reads a byte of data from a VI-
scoped FIFO, passed from the multiplexer and stored 
as a Boolean array on the FPGA through MOSI line. 

3)  The chip select (CS) line is pulled low to prepare the 
slave device to receive and send data one bit at a time. 

4)  The clock signal is generated depending on the clock 
mode. If CPOL is 0, the clock idle state is logic low 
and the first edge of clock signal is a rising edge, If 
CPOL is 1, the clock idle state is logic high and the 
first edge of the clock signal is a falling edge. 

5)  If CPHA is 0, the data is clocked in when the clock 
signal changes from idle to active state. If CPHA is 
1, the data is clocked in when the clock signal 
changes from active to idle state. 

6)  A waiting state is inserted between setting and 
resetting the clock signal to guarantee the proper 
clock rate. This process is repeated for each bit that 
needs to be sent 

7) After each byte transfer, the data received from the 
slave device is stored in another VI-scoped FIFO 
before being sent back to the host via the FPGA 
multiplexer through MISO line. 
 

If all the data sent to the state machine has been sent 
to MOSI line and the corresponding data has been 
received from MISO line, the CS line is reset to the idle 
state, and the program waits for the following 
command. 

 
 

 
 

 

 
 

 

 

Fig. (3) SPI_Configure Parameters & SPI_Write/Read Parameter
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Fig. (4) SPI host API sequence 
 

 

 

Fig. (5) SPI Engine state machine operating sequence 

Host API 

Configure VI Write/Read VI 

Set SCLK Rate, CPOL, CPHA, and Configure Command Set the Number of Bits, U8 Data, and Write/Read Command 

FPGA Multiplexer 

Write Configuration Parameters to Global Variables, Set True to Start Flag  Pass Data received from Host to Target-Scoped FIFO, Set True to Start Flag  

FPGA Multiplexer 

SPI Engine 

Read bit from MISO on the idle edge of SCLK. 

SPI Engine 

Is Start Flag true & the selected port the same as the required Port? 

“Start” State 

“Idle” State 

“Configure Hardware” State 

Write Configuration Parameters to a Configuration Cluster 

“Set Done” State 

“Start Hardware” State 

“Initialize” State 

Set Clock to idle, based on CPOL 

value 

“Read from FIFO” State 

Read Data from FIFO and convert it to 

Boolean array for Digital I/O, write it bit-

by-bit to MOSI. 

“Set CS” State 

Place the first bit of data on the MOSI line 

if CPHA is set to sample on the active edge. 

“Wait Before Set” State 

Providing Timing for the specified clock rate 

“Set Clock” State 

Set Clock to Idle State 

Read bit from MISO on the 

active edge of SCLK. 
 

Place bit to MOSI on the idle edge of SCLK. 

“Wait Before Reset” State 

Providing Timing for the specified clock rate 

“Reset Clock” State 

“Write to FIFO” State 

Place bit to MOSI on the active 

edge of SCLK. 

Set Clock to Active State 

Check SPI Command 

Check CPHA 

Check CPHA 

Are there bytes to be written? 

= 1 

= 0 

= 1 

= 0 

Write/Read SPI 

Configure Idle 

 Yes 

No 

Only if 8-bit data has been delivered, else, go back to “set Clock “state. 

Reset CS State 

“Idle” State “Set Done” State Stop Loop 

Yes 

No 
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4. System Development 

In the proposed implementation of SPI on FPGA, it 
has been obtained to use National Instrument Single 
Board Reconfigurable Input/Output (SbRIO-9631) 
interfacing with the L3G4200D gyroscope sensor to 
validate the implemented protocol.  

4.1. Hardware Interfacing 

4.1.1. NI SbRIO-9631 

The development environment for the NI SbRIO-
9631 prototype robot is intricate and modularly 
constructed.  
Figure 6 shows a simplified block diagram of the 
robot's electro-mechanical components and all its 

fundamental modules. The entire hardware setup is 
built around a main board with an FPGA processor 
from Xilinx, connected to peripheral circuits and digital 
and analog input/output channels. [14].  
 

4.1.2.  L3G4200D Gyroscope Sensor 

The STMicroelectronics L3G4200D, is a three-axis 
angular rate sensor known as PmodGYRO which can 
deliver unprecedented zero rate level stability and 
sensitivity over temperature and time. It has a sensing 
component and an IC interface that can communicate 
the measured angular rate to the external world using 
an I2C or SPI digital interface [15]. 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. (6) General view and block diagram of NI SbRIO-9631 prototype robot 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7) PmodGYRO pin configuration 

 
 

 

Fig. (8) PmodGYRO (L3G4200D) timing diagram 
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The following features are described with reference to 
the L3G4200D datasheet: 

• The SPI protocol is used by the sensor to connect to 
the host board. SPI mode is activated by driving the 
Chip Select (CS) line to a logic low. Figure 8 shows 
how to communicate with the sensor to read a 
specific register's data. 

• The SCLK's idle level is high, making CPOL = 1, 
and the serial port's data input and output are driven 
at the SCLK's falling edge and are intended to be 
captured at its rising edge, meaning CPHA = 1. 
Therefore, mode 3 must be asserted. 

 

• Referring to MOSI line: 
1)  Bit 0: RW bit  

a- When 0, the data DI (7:0) is written to the device. 

b- When 1, the data DO (7:0) is read from the device, 

which drives MISO at the start of bit 8. 

2)  Bit 1: MS bit. 

a- When 0, the address remains unchanged in 

multiple write/read commands. 

b- When 1, the address is auto incremented in 

multiple write/read commands. 

3)  Bit 2-7: address AD (5:0). This is the address field 

of the indexed register. 

4)  Bit 8-15: data DI (7:0) (write mode). This is the data 

that is written to the device. 

5)  Bit 8-15: data DO (7:0) (read mode). This is the data 

that is read from the device. 

• The data output X, Y and Z are 16 bit-rate values 
placed on registers addresses from (28h) to (2Dh), 
each axis has two 8-bit registers. 

• Some specific registers must be defined first such as 
registers responsible for selecting the output data 
rate, resolution, power mode, …etc., please refer to 
the sensor datasheet for more information. 

 

4.2. Software Interfacing 

4.2.1. SPI Implementation on FPGA  

Using the Xilinx compilation tool, the LabVIEW 

FPGA code is implemented on the SbRIO-9631 FPGA 

board after that the design flow was successfully 

emulated and verified in a practical project. This tool 

constructs the software code as a hardware circuit on 

the FPGA through configurable logic blocks (CLBs), 

I/O blocks and programmable interconnects that join 

various logic blocks to produce the functionality 

specified in the software. It also routes signals from I/O 

blocks into and out from the FPGA. 
 

4.2.2. Host Implementation on Real-Time 

Target 

Figure 9 shows the sequence in which the code is 

implemented and the corresponding block diagram. 

 

5. Experimental Results and Test Operations 

Both the simulation and the actual experiment 

demonstrate that the bus is in an idle state when the CS 

value is 1 and that the bus begins to transmit data when 

the CS value is 0. On the falling edge of the first cycle, 

the host sends the highest bit of data to the slave 

through MOSI, filling up the Target-scoped FIFO and 

raising the write flag high when transmitting to the 8th 

bit, indicating that the 8-bit data transfer is complete. 

The slave then corresponds to the data sent and sends 

back the data in the required register via the MISO 

line, filling the VI-scoped FIFO and being ready to be 

sent back to the host via the multiplexer. In conclusion, 

the SPI module's intended function is working 

properly. 

 

6.  Conclusion 
The study focuses on presenting the SPI 

communication protocol implementation strategy using 

LabVIEW software with LabVIEW FPGA module to 

design the SPI module that complies with the SPI bus 

specification, followed by functional testing to verify 

the implemented protocol. The protocol is designed to 

require minimum resources on the FPGA board, 

making it an excellent choice for use in projects. In 

addition, the SPI module performs as intended, 

operates reliably, and scales effectively. Moreover, this 

state-machine SPI implementation technique enables 

the control of various slaves on the same port and 

facilitates online changes for dynamic clock 

frequencies.  

Because of FPGA  reconfigurability, as well as the 

SPI bus's wide variety of application, the module can 

be simply extended with hardware as required, to boost 

functionality and capabilities. 

 

Table (2) FPGA Utilization Summary of the SPI 

Device Utilization Used Available Percent 

Slice Registers 2124 15360 13.8% 

Slice LUTs 3336 15360 21.7% 

Block RAMs 4 24 16.7% 

Mult18X18s 1 24 4.2% 
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Fig (9) Host program block diagram. 

 

 
 

 

Fig (10) Front panel showing X, Y and Z angular velocities & angular displacement. 

  

Open FPGA Reference 

Call SPI_Configure.VI  Write Configuration Parameters required. 

Call SPI_Write/Read.VI  Write address and data for each control register. 

Open while loop to continuously read data. 

Call SPI_Write/Read.VI  Write address for each data register. 

Close FPGA Reference 

SPI_Configure.VI  SPI_Write/Read.VI  
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