
Benha Journal of Applied Sciences (BJAS) Print: ISSN 2356–9751

Vol. (9) Issue (5) (2024), (127-134) Online: ISSN 2356–976x

http://bjas.bu.edu.eg

Benha Journal of Applied Sciences, Vol. (9), Issue (5) (2024)

A State Machine-Based Approach for Implementing SPI Communication on

FPGAs

Ayman S. Shama1, Manar H. Lashin 2, Ayman A. Nada 3

1Mechanical Engineering Department, Engineering Faculty, Benha University, Benha, Egypt
2Electrical Engineering Department, Engineering Faculty, Benha University, Benha, Egypt

3Mechatronics and Robotics Engineering Department, Egypt-Japan University of Science and Technology,

Alexandria, Egypt

Email: ayman.shamah@bhit.bu.edu.eg

Abstract

The Serial Peripheral Interface (SPI) is a widely used synchronous serial communication bus that facilitates

communication between a master device, and one or more subordinate devices, referred to as slave devices. This

article outlines the conceptualization and design procedures of an interface for the SPI communication bus on a

Field Programmable Gate Array (FPGA) platform, using the LabVIEW programming environment alongside the

LabVIEW FPGA module. The structure and operation of the SPI communication bus are presented, along with

its timing structure and four distinct operational modes. The implementation of SPI bus communication on the

FPGA is achieved via the use of the state machine methodology. With the state-machine SPI technique, multiple

devices can be managed simultaneously through a single port. Additionally, the clock frequency can be adjusted

online, making the system adaptable and flexible for different tasks. LabVIEW is used to implement the SPI

module circuit, which is then mapped onto the National Instruments Single-Board (NI SbRIO-9631) FPGA board.

The L3G4200D gyroscope sensor is used to conduct testing on the protocol and verify the effectiveness of the

state machine technique. The results of this study demonstrate the successful implementation of the SPI

communication bus interface on an FPGA using LabVIEW and LabVIEW FPGA module. The module exhibits

versatility, efficiency, and the ability to communicate with a wide range of devices.

Keywords: Serial Peripheral Interface (SPI), LabVIEW, Serial Communication, FPGA, NI SbRIO-9631.

1. Introduction

The Serial Peripheral Interface (SPI) is a
synchronous serial interface technology first
introduced by Motorola. The SPI bus is physically
implemented by a module on a microprocessor control
unit (MCU) connected to a peripheral microcontroller
(PIC micro), which allows the MCU to perform high-
speed data communication with various peripheral
devices in full-duplex synchronous serial mode [1]. In
mechatronics applications, FPGAs are often used to
control sensors, actuators and other devices that
perform various tasks. To communicate with these
devices, microcontrollers need to use protocols that
define how data is exchanged [2,3]. SPI is one of many
serial buses that has several advantages over other
widely used buses, such as the I2C, CAN, and USB.
For example, an SPI bus can transmit data at several
Megabytes per second (Mbps) faster than other serial
buses. This paper discusses the structure, operation,
timing structure and four operational modes of the SPI
communication bus [4].

In addition to the SPI conceptualization and design
procedures outlined in this paper, the utilization of the
SPI offers several notable advantages for
communication within embedded systems. The SPI
protocol provides a straightforward and efficient means
of data exchange between a master device and multiple
slave devices, enabling seamless integration and
communication across diverse hardware components.

One significant advantage of employing SPI is its
inherent simplicity and flexibility, making it ideal for a
wide range of applications in embedded systems. With

its synchronous serial communication architecture, SPI
facilitates high-speed data transfer while requiring
minimal hardware resources, thereby optimizing
system performance and resource utilization.
Moreover, the implementation of SPI communication
on a Field Programmable Gate Array (FPGA) platform,
as demonstrated in this study, offers additional benefits.
By leveraging the state machine methodology and the
capabilities of LabVIEW alongside the LabVIEW
FPGA module, developers can achieve robust and
flexible SPI interfaces tailored to their unique
application needs.

Overall, the successful implementation of the SPI
communication bus interface on an FPGA using
LabVIEW and LabVIEW FPGA module underscores
the versatility, efficiency, and effectiveness of SPI in
facilitating seamless communication and integration
within embedded systems. These advantages make SPI
a compelling choice for a wide range of applications,
including sensor interfacing, communication with
peripherals, and control systems design.

2. SPI Protocol Overview

The SPI bus is a four-wire synchronous serial bus
commonly used to communicate between a master
device and one or more slave devices [5]. The master
device controls the communication by generating the
clock signal (SCLK) and selecting the slave device to
communicate with using the chip select (CS) signal.
The SPI bus uses an 8-bit serial shift register in the
master and slave devices. Data is transmitted on the
MOSI (Master Out Slave In) line from the master to the
slave, and data is received on the MISO

http://bjas.bu.edu.eg/
mailto:ayman.shamah@bhit.bu.edu.eg

128

Benha Journal of Applied Sciences, Vol. (9), Issue (5) (2024)

A State Machine-Based Approach for Implementing SPI Communication on FPGAs

(Master In Slave Out) line from the slave to the master.
The data is transferred one bit at a time and
synchronized to the SCLK signal [6].

The SPI bus has four essential signal lines:

• CS (Chip Select): This line is used to select the slave
device for communication. The signal is typically
active low, so pulling it low will select the slave
device.

• SCLK (Serial Clock): This line synchronizes the data
transfer between the master and slave devices.

• MOSI (Master-Out-Slave-In): This line transmits
data from the master to the slave.

• MISO (Master-In-Slave-Out): This line receives data
from the slave to the master.

2.1. SPI Bus Working Principle

The SPI bus is in idle state when there is no data
transferred between the master and the slave. The
master initiates communication by enabling the chip
select (CS) signal and sending the clock signal over the
(SCLK) line. Data is simultaneously transmitted
(shifted out serially from the master onto the MOSI
line) and received (from the slave's MISO line) on the
rising or falling edge of the clock signal, depending on
the clock polarity (CPOL) and clock phase (CPHA)
settings [7]. The data transfer process is completed
when the master returns the SCLK line to the idle level
and the CS line to the inactive state. The SPI
master/salve interface is illustrated in figure 1.

 Fig. (1) SPI bus structure with master and slave.

The CS line carries the signal that initiates the
communication of the corresponding slave. The SCLK
line carries the clock signal that synchronizes the data
transfer between the master and the slave. The MOSI
line carries the master output signal with the data to be
transmitted to the slave. The MISO line carries the
slave output signal with the data received from the
slave. The CPOL and CPHA settings determine when
the data is shifted from the master and when the slave
samples it. The CPOL setting specifies the idle state of
the SCLK line, while the CPHA setting specifies when
the data is shifted out from the master relative to the
rising or falling edge of the SCLK line [8].

The SPI bus working principle is summarized as
follows:

1) The host sets the SCLK output to an idle level, the
CS line is pulled high to an inactive state, and the
SPI bus is idle when there is no data to be transferred
between the master and the slave.

2) The master initiates communication by pulling the
CS line low.

3) The master then sends the clock signal (SCLK) line.
4) The data is shifted out serially from the master onto

the MOSI line and received on the slave's MISO line
on the rising or falling edge of the SCLK line,
depending on the CPOL and CPHA settings.

5) The data transfer process is completed when the
master sends the last bit of data and returns the
SCLK line to the idle level.

6) The master then pulls the CS line high to de-select
the slave.

2.2. SPI Clock Specifications

The SPI clock signal has two parameters: clock
polarity (CPOL) and clock phase (CPHA) as shown in
figure 2. The CPOL parameter controls the level of the
clock signal idle state. In contrast, the CPHA parameter
controls whether data is sampled on the falling or rising
edge of the serial clock. The following table shows the
four possible combinations of CPOL and CPHA [9,10].

Table (1) Four Combinations of CPOL and CPHA

SPI Mode CPOL CPHA CPOL in Idle State Sample and/or shift data

0 0 0 Logic Low Data sampled on the rising edge and shifted out on the falling edge

1 0 1 Logic Low Data sampled on the falling edge and shifted out on the rising edge

2 1 0 Logic High Data sampled on the falling edge and shifted out on the rising edge

3 1 1 Logic High Data sampled on the rising edge and shifted out on the falling edge

Fig (2) SPI timing diagram

 129

Benha Journal of Applied Sciences, Vol. (9), Issue (5) (2024)

Ayman S. Shama, Manar H. Lashin, Ayman A. Nada

3. Software Design of SPI Bus Communication
The software design of SPI communication bus

interface is implemented using LabVIEW and

LabVIEW FPGA modules.

The main tasks of the SPI master module are to:

• Receive the necessary commands from the host to
execute the relevant code blocks.

• Generate the clock signal based on the CPOL and
CPHA parameters to ensure synchronization.

• Set the CS line logic low to start transmission and
high to stop it.

• Receive 8-bit parallel data from the host, convert it
to serial data, and then send the bits one a time to the
slave over the MOSI line.

• Obtain parallel data from the slave, convert it to
serial data, and output it through the MISO line one
bit a time.

The SPI module consists of three main Virtual

Instruments (VIs): the Host Application Program
Interface (API), the FPGA Multiplexer VI, and the SPI
Engine VI. The Host Interface is responsible for
communication between the host PC or real-time
controller and FPGA. The FPGA Multiplexer is
responsible for routing the data between the host and
SPI Engine. The SPI Engine is responsible for applying
the SPI protocol sequence to the hardware. Both the
FPGA Multiplexer and the SPI Engine are
implemented on FPGA using two parallel loops to take
advantage of the parallel processing capabilities of the
FPGA. This allows the SPI module to achieve high data
transfer rates [11,12].

3.1. Host Application Program Interface

The host API is a LabVIEW interface to the SPI
communication that simplifies data transfer between a
host PC or real-time controller and the FPGA
multiplexer, figure 4 shows the operating sequence of
this VI. This API consists of two VIs:

• The (SPI_Configure) establishes the port to be used,
along with the SCLK rate, CPOL, CPHA, and CS.
The Configure command passes this data to the
FPGA multiplexer and stores it in the global variable
of the FPGA.

The(SPI_Write/Read) takes the number of bits
transferred to/from the specified port. The Write/Read
command passes the written/read data to/from the
FPGA multiplexer target-scoped FIFO.

3.2. Field-Programmable Gate Array Multiplexer

This Virtual Instrument consists of a state machine
that manages the handshaking between the host and the
FPGA and multiplexes data to the correct port. The host

is responsible for determining the state that the
multiplexer should execute. The multiplexer initially
sits in idle state, waiting for a start command from the
host. When the start command is received, the
multiplexer then checks the command sent from the
host. If the command is "Configure", the CPOL,
CPHA, and CS values are written to global variables to
prepare for the following data transfer. If the command
is "Write/Read SPI", data received from the host is
passed to a target-scoped FIFO, then transferred to the
VI-scoped FIFO to be passed to the SPI engine in the
Write and Read states.

3.3. SPI Engine

A state machine is an excellent choice for
implementing the SPI protocol because the protocol has
a specific order in which bus transitions occur [13].
Each state completes one part of the communication
before moving on to the next step in the proper order,
figure 5 shows the operating sequence of this VI.

The following are the steps involved in the SPI state
machine:

1) The state machine initiates when receiving a start
command from the FPGA multiplexer, writing the
configuration parameters to be passed to
corresponding states.

2) The state machine reads a byte of data from a VI-
scoped FIFO, passed from the multiplexer and stored
as a Boolean array on the FPGA through MOSI line.

3) The chip select (CS) line is pulled low to prepare the
slave device to receive and send data one bit at a time.

4) The clock signal is generated depending on the clock
mode. If CPOL is 0, the clock idle state is logic low
and the first edge of clock signal is a rising edge, If
CPOL is 1, the clock idle state is logic high and the
first edge of the clock signal is a falling edge.

5) If CPHA is 0, the data is clocked in when the clock
signal changes from idle to active state. If CPHA is
1, the data is clocked in when the clock signal
changes from active to idle state.

6) A waiting state is inserted between setting and
resetting the clock signal to guarantee the proper
clock rate. This process is repeated for each bit that
needs to be sent

7) After each byte transfer, the data received from the
slave device is stored in another VI-scoped FIFO
before being sent back to the host via the FPGA
multiplexer through MISO line.

If all the data sent to the state machine has been sent
to MOSI line and the corresponding data has been
received from MISO line, the CS line is reset to the idle
state, and the program waits for the following
command.

Fig. (3) SPI_Configure Parameters & SPI_Write/Read Parameter

130

Benha Journal of Applied Sciences, Vol. (9), Issue (5) (2024)

A State Machine-Based Approach for Implementing SPI Communication on FPGAs

Fig. (4) SPI host API sequence

Fig. (5) SPI Engine state machine operating sequence

Host API

Configure VI Write/Read VI

Set SCLK Rate, CPOL, CPHA, and Configure Command Set the Number of Bits, U8 Data, and Write/Read Command

FPGA Multiplexer

Write Configuration Parameters to Global Variables, Set True to Start Flag Pass Data received from Host to Target-Scoped FIFO, Set True to Start Flag

FPGA Multiplexer

SPI Engine

Read bit from MISO on the idle edge of SCLK.

SPI Engine

Is Start Flag true & the selected port the same as the required Port?

“Start” State

“Idle” State

“Configure Hardware” State

Write Configuration Parameters to a Configuration Cluster

“Set Done” State

“Start Hardware” State

“Initialize” State

Set Clock to idle, based on CPOL

value

“Read from FIFO” State

Read Data from FIFO and convert it to

Boolean array for Digital I/O, write it bit-

by-bit to MOSI.

“Set CS” State

Place the first bit of data on the MOSI line

if CPHA is set to sample on the active edge.

“Wait Before Set” State

Providing Timing for the specified clock rate

“Set Clock” State

Set Clock to Idle State

Read bit from MISO on the

active edge of SCLK.

Place bit to MOSI on the idle edge of SCLK.

“Wait Before Reset” State

Providing Timing for the specified clock rate

“Reset Clock” State

“Write to FIFO” State

Place bit to MOSI on the active

edge of SCLK.

Set Clock to Active State

Check SPI Command

Check CPHA

Check CPHA

Are there bytes to be written?

= 1

= 0

= 1

= 0

Write/Read SPI

Configure Idle

 Yes

No

Only if 8-bit data has been delivered, else, go back to “set Clock “state.

Reset CS State

“Idle” State “Set Done” State Stop Loop

Yes

No

 131

Benha Journal of Applied Sciences, Vol. (9), Issue (5) (2024)

Ayman S. Shama, Manar H. Lashin, Ayman A. Nada

FPGA

Real-time

Processor

Digital I/O ports

4. System Development

In the proposed implementation of SPI on FPGA, it
has been obtained to use National Instrument Single
Board Reconfigurable Input/Output (SbRIO-9631)
interfacing with the L3G4200D gyroscope sensor to
validate the implemented protocol.

4.1. Hardware Interfacing

4.1.1. NI SbRIO-9631

The development environment for the NI SbRIO-
9631 prototype robot is intricate and modularly
constructed.
Figure 6 shows a simplified block diagram of the
robot's electro-mechanical components and all its

fundamental modules. The entire hardware setup is
built around a main board with an FPGA processor
from Xilinx, connected to peripheral circuits and digital
and analog input/output channels. [14].

4.1.2. L3G4200D Gyroscope Sensor

The STMicroelectronics L3G4200D, is a three-axis
angular rate sensor known as PmodGYRO which can
deliver unprecedented zero rate level stability and
sensitivity over temperature and time. It has a sensing
component and an IC interface that can communicate
the measured angular rate to the external world using
an I2C or SPI digital interface [15].

Fig. (6) General view and block diagram of NI SbRIO-9631 prototype robot

Fig. (7) PmodGYRO pin configuration

Fig. (8) PmodGYRO (L3G4200D) timing diagram

CS

SCLK

MOSI

MISO

132

Benha Journal of Applied Sciences, Vol. (9), Issue (5) (2024)

A State Machine-Based Approach for Implementing SPI Communication on FPGAs

The following features are described with reference to
the L3G4200D datasheet:

• The SPI protocol is used by the sensor to connect to
the host board. SPI mode is activated by driving the
Chip Select (CS) line to a logic low. Figure 8 shows
how to communicate with the sensor to read a
specific register's data.

• The SCLK's idle level is high, making CPOL = 1,
and the serial port's data input and output are driven
at the SCLK's falling edge and are intended to be
captured at its rising edge, meaning CPHA = 1.
Therefore, mode 3 must be asserted.

• Referring to MOSI line:
1) Bit 0: RW bit

a- When 0, the data DI (7:0) is written to the device.

b- When 1, the data DO (7:0) is read from the device,

which drives MISO at the start of bit 8.

2) Bit 1: MS bit.

a- When 0, the address remains unchanged in

multiple write/read commands.

b- When 1, the address is auto incremented in

multiple write/read commands.

3) Bit 2-7: address AD (5:0). This is the address field

of the indexed register.

4) Bit 8-15: data DI (7:0) (write mode). This is the data

that is written to the device.

5) Bit 8-15: data DO (7:0) (read mode). This is the data

that is read from the device.

• The data output X, Y and Z are 16 bit-rate values
placed on registers addresses from (28h) to (2Dh),
each axis has two 8-bit registers.

• Some specific registers must be defined first such as
registers responsible for selecting the output data
rate, resolution, power mode, …etc., please refer to
the sensor datasheet for more information.

4.2. Software Interfacing

4.2.1. SPI Implementation on FPGA

Using the Xilinx compilation tool, the LabVIEW

FPGA code is implemented on the SbRIO-9631 FPGA

board after that the design flow was successfully

emulated and verified in a practical project. This tool

constructs the software code as a hardware circuit on

the FPGA through configurable logic blocks (CLBs),

I/O blocks and programmable interconnects that join

various logic blocks to produce the functionality

specified in the software. It also routes signals from I/O

blocks into and out from the FPGA.

4.2.2. Host Implementation on Real-Time

Target

Figure 9 shows the sequence in which the code is

implemented and the corresponding block diagram.

5. Experimental Results and Test Operations

Both the simulation and the actual experiment

demonstrate that the bus is in an idle state when the CS

value is 1 and that the bus begins to transmit data when

the CS value is 0. On the falling edge of the first cycle,

the host sends the highest bit of data to the slave

through MOSI, filling up the Target-scoped FIFO and

raising the write flag high when transmitting to the 8th

bit, indicating that the 8-bit data transfer is complete.

The slave then corresponds to the data sent and sends

back the data in the required register via the MISO

line, filling the VI-scoped FIFO and being ready to be

sent back to the host via the multiplexer. In conclusion,

the SPI module's intended function is working

properly.

6. Conclusion
The study focuses on presenting the SPI

communication protocol implementation strategy using

LabVIEW software with LabVIEW FPGA module to

design the SPI module that complies with the SPI bus

specification, followed by functional testing to verify

the implemented protocol. The protocol is designed to

require minimum resources on the FPGA board,

making it an excellent choice for use in projects. In

addition, the SPI module performs as intended,

operates reliably, and scales effectively. Moreover, this

state-machine SPI implementation technique enables

the control of various slaves on the same port and

facilitates online changes for dynamic clock

frequencies.

Because of FPGA reconfigurability, as well as the

SPI bus's wide variety of application, the module can

be simply extended with hardware as required, to boost

functionality and capabilities.

Table (2) FPGA Utilization Summary of the SPI

Device Utilization Used Available Percent

Slice Registers 2124 15360 13.8%

Slice LUTs 3336 15360 21.7%

Block RAMs 4 24 16.7%

Mult18X18s 1 24 4.2%

 133

Benha Journal of Applied Sciences, Vol. (9), Issue (5) (2024)

Ayman S. Shama, Manar H. Lashin, Ayman A. Nada

Fig (9) Host program block diagram.

Fig (10) Front panel showing X, Y and Z angular velocities & angular displacement.

Open FPGA Reference

Call SPI_Configure.VI Write Configuration Parameters required.

Call SPI_Write/Read.VI Write address and data for each control register.

Open while loop to continuously read data.

Call SPI_Write/Read.VI Write address for each data register.

Close FPGA Reference

SPI_Configure.VI SPI_Write/Read.VI

134

Benha Journal of Applied Sciences, Vol. (9), Issue (5) (2024)

A State Machine-Based Approach for Implementing SPI Communication on FPGAs

References

[1] F. Leens, (2009) An Introduction to I2C and SPI

Protocols.In: IEEE Instrumentation &

Measurement Magazine. Beijing. pp. 8-13

[2] Ayman A. Nada, Victor Parque, Mona A.

Bayoumi, 2023, "Accelerating the Performance of

Fuzzy-FPGA Based Control in LabVIEW for

Trajectory Tracking Problems", 22nd IFAC

World Congress, Yokohama, Japan, July 9-14,

2023.

[3] A.K. Oudjida, M.L. Berrandjia, A. Liacha, R.

Tiar, K. Tahraoui & Y.N. Alhoumays, “ Design

and Test of General-Purpose SPI Master/Slave Ips

on OPB Bus,” 2010 IEEE.

[4] AA Nada, AH Bashiri, 2018, "Integration of

multibody system dynamics with sliding mode

control using FPGA technique for trajectory

tracking problems", ASME 2018 Dynamic

Systems and Control Conference, September 30–

October 3, 2018, Atlanta, Georgia, USA. Paper

No: DSCC2018-9108.

[5] Lattice Semiconductor Inc., “SPI Slave

Controller V 01.0,” October 2012.

[6] W.Mai, W.Liu. (2007) Design and

Implementation of SPI Interface Based on FPGA

and MSP430. Instrumentation Users, pp. 100-102.

[7] Motorola Inc., “SPI Block Guide V03.06,”

March 2003.

[8] W.C.Zhu, S. ,Zhang, H.L.Jiang. (2017) Design

of high speed data communication interface based

on ARM and FPGA. Journal of Guilin University

of Electronic Technology, pp. 293-297

[9] Oudjida.A.Berrandjia, M.Tiar.R, Liacha.A. &

Tahraoui, K., "FPGA Implementation of I2C &

SPI Protocols:a Comparative Study," IEEE, 2018

[10] D.N. Oruganti, Design of power efficient SPI

interface, in 2014 IEEE International Conference

on Advanced Communications, Control and

Computing Technologies (IEEE, 2014)

[11] Jianlong Zhang, Jiwei Wang, Chunyu Wu,

Wenjing Zhang, “The design and realization of a

comprehensive SPI interface controller,” Second

International Conference on Mechanic

Automation and Control Engineering (MACE),

2011 IEEE.

[12] N.Q. B. M. Noor and A. Saparon, "FPGA

implementation of high speed serial peripheral

interface for motion controller," in Proc. 2012

IEEE Symposium on Industrial Electronics and

Applications (ISIEA), pp.78-83, Sept. 2012.

[13] N.Q. B. M. Noor and A. Saparon, "FPGA

implementation of high speed serial peripheral

interface for motion controller," in Proc. 2012

IEEE Symposium on Industrial Electronics and

Applications (ISIEA), pp.78- 83, Sept. 2012.

[14] User Manual National Inst. Co. available:

https://www.ni.com/en-lb/support/model.sbrio-

9631.html

[15] User Manual Digilent Co. available:

https://digilent.com/reference/pmod/pmodgyro/st

art

https://www.ni.com/en-lb/support/model.sbrio-9631.html
https://www.ni.com/en-lb/support/model.sbrio-9631.html
https://digilent.com/reference/pmod/pmodgyro/start
https://digilent.com/reference/pmod/pmodgyro/start

