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Abstract

This paper addresses the critical issue of Sampling Frequency Offset (SFO) in Orthogonal
Frequency Division Multiplexing (OFDM) systems, which arises from mismatches between the sampling
rates of the transmitter and receiver. Such discrepancies disrupt subcarrier orthogonality, leading to
significant performance degradation, including Inter-Carrier Interference (ICl), phase distortion, and
increased Bit Error Rate (BER). To ensure reliable data transmission, accurate SFO estimation and
compensation are essential. The study examines four widely used SFO estimation techniques: the Phase
Difference (PD) method, the Correlation-Based (CB) method, the Phase Difference Weighted by Subcarrier
Index (PD-WSI) method, and the Hybrid Estimation (H-EST) method. Additionally, it introduces novel
machine learning-based approaches—Linear Discriminant Analysis (LDA)-based, Kernel Support Vector
Machine (KSVM)-based, and Artificial Neural Network (ANN)-based SFO estimators—designed to
enhance synchronization accuracy. Comparative evaluations demonstrate that these proposed methods
significantly outperform conventional and hybrid techniques by achieving lower Root Mean Square Error
(RMSE), thereby effectively mitigating SFO-induced impairments and improving overall OFDM system

performance.
Keywords: SFO estimation, Data-Aided (DA) techniques, LDA-based SFO Estimator, KSVM-based SFO Estimator, ANN-based

SFO Estimator.
I. INTRODUCTION

Orthogonal Frequency Division
Multiplexing (OFDM) has become a fundamental
modulation technique in modern wireless
communication, enabling high data rates, efficient
spectrum utilization, and robustness against
multipath fading. As a key technology, it
underpins  various  applications, including
broadband wireless networks, digital television
broadcasting, and next-generation  mobile
communication systems like 5G and beyond.
However, despite its advantages, OFDM is highly
vulnerable to synchronization errors, particularly
Sampling Frequency Offset (SFO), which can
significantly degrade system performance if not
properly managed [1]. SFO occurs when there is
a mismatch between the sampling clocks of the
transmitter and receiver. This discrepancy can
stem from oscillator imperfections, temperature
variations, hardware constraints, and long-term
clock drifts. SFO induces a linearly increasing
phase shift across subcarriers, disrupting the
orthogonality of the system and leading to Inter-
Carrier Interference (ICI). This interference
compromises  signal integrity,  ultimately
degrading data reliability and overall transmission

quality.

The impact of SFO on OFDM systems is
complex and significant. One of the primary
effects is phase distortion, which leads to errors in
symbol detection and an increase in the Bit Error
Rate (BER). Additionally, SFO causes time-
domain misalignment, where the symbols
gradually  drift,  resulting in  reduced
synchronization accuracy and improper sampling.
This misalignment not only hampers data
recovery but also diminishes overall system
efficiency. Moreover, SFO disrupts the matched
filter’s output by introducing phase shifts and
timing errors, which degrade signal detection and
lower the Signal-to-Noise Ratio (SNR). If left
unaddressed, these issues can substantially
degrade network performance, restricting data
throughput and reducing the reliability of wireless
communication [2]. To mitigate the effects of
SFO, researchers have developed various
estimation techniques. A widely used approach is
pilot-aided estimation, where predefined pilot
symbols embedded within the OFDM signal
serve as reference points for detecting and
correcting  frequency mismatches.  Another
technique, data-aided synchronization, leverages
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known reference data to enhance frequency offset
estimation  accuracy.  Additionally,  blind
estimation methods analyze inherent signal
properties without relying on additional reference
symbols, making them beneficial in bandwidth-
limited scenarios. While these conventional
techniques have improved synchronization
accuracy, achieving precise and efficient SFO
correction remains a significant challenge,
particularly in  dynamic environments with
unpredictable channel variations [3].

Through machine learning (ML), SFO
estimation has advanced with adaptive techniques
that optimize synchronization accuracy. Unlike
traditional approaches that rely on predefined
mathematical models, ML-based methods can
analyze vast amounts of received signal data,
detect complex patterns, and dynamically adjust
estimation strategies to account for changing
wireless conditions. This adaptability makes ML
particularly useful in environments where channel
conditions fluctuate rapidly. One of the key
advantages of ML in SFO estimation is its ability
to handle nonlinear distortions and unpredictable
variations in signal behavior. Traditional
estimation techniques often struggle with
inaccuracies in real-world scenarios due to
hardware imperfections, oscillator drift, and noise
interference. In contrast, ML algorithms can
continuously learn from real-time data, refining
their predictions and improving synchronization
precision over time. This capability enables more
resilient and efficient communication systems,
reducing errors and enhancing overall network
performance. Another important aspect of ML-
based SFO estimation is its potential for
automating complex signal processing tasks.
Conventional methods require extensive manual
tuning of parameters and reliance on fixed
assumptions about the communication channel.
ML-driven approaches, however, can
automatically extract meaningful features from
received signals and adapt synchronization. This
not only reduces computational complexity but
also enhances the scalability of wireless systems,
making ML an attractive solution for next-
generation communication technologies [4].
Despite its advantages, the integration of ML into
SFO estimation comes with challenges.

Computational demands, data availability, and
real-time processing constraints are critical
factors. Our research seeks to optimize ML
models to overcome these barriers, enhancing
efficiency and reducing computational strain. By
leveraging the evolving capabilities of ML, we
aim to enhance synchronization accuracy and
contribute to the development of more robust,
adaptive, and intelligent communication systems.

In this work, we pursued three primary
objectives:

» Assess the impact of sampling
frequency offset on OFDM system
performance, with a focus on BERS.

» Evaluate existing SFO estimation
methods, Implement and evaluate
existing SFO estimation  methods,
analyzing their performance, strengths,
and limitations.

» Develop and propose a machine
learning-based SFO estimation
approach that enhances accuracy,
minimizes synchronization errors, and
improves overall system reliability and
efficiency.

The Essential Findings and Contributions are:

» Comprehensive Performance

Evaluation: A detailed comparison of

traditional, hybrid, and machine learning-

based SFO estimation methods under

various SNR levels and fading channel
conditions.

» Superiority of the proposed ML-Based
SFO Estimators: Demonstrated that
Linear Discriminant Analysis (LDA)-
based and Artificial Neural Network
(ANN)-based estimators achieve
significantly lower Root Mean Square
Error (RMSE) and BER values,
outperforming conventional and hybrid
approaches in both accuracy and
robustness.

» Analysis Under Fading Channels:
Provided insights into  estimator
performance in realistic fading
environments, showing that ANN and
LDA maintain high reliability.
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> No Need for Perfect Channel State
Information: Demonstrated that the
proposed ML-based SFO estimators do
not require perfect CSI, making them
more robust and adaptable to practical
deployment scenarios with imperfect
channel information.

» Dimensionality Reduction for
Efficiency: Principal Component
Analysis (PCA) and Singular Value
Decomposition (SVD) were evaluated to
reduce computational overhead. SVD
achieved a 96.14% reduction in
processing time, while PCA delivered a
37.91% improvement in estimation
performance.

» Latency and Implementation
Considerations:  Assessed  inference
latency across methods, highlighting
trade-offs between estimation accuracy
and computational speed for practical
system deployment.

> Potential to Replace Existing SFO
Estimation Techniques: Given their
superior accuracy, our proposed method
has the potential to replace existing SFO
estimation techniques in modern digital
communication systems.

The paper is organized as follows: Section Il
reviews related work, Section Il introduces the
proposed method, Section IV presents the results
along with their analysis, and Section V
concludes the paper with final remarks.

I1. SURVEY

Earlier research on estimating SFO has
involved a range of different techniques. Fischer
et al. [5] introduced a two-step frequency
synchronization  method  for  Orthogonal
Frequency Division Multiplexing receivers,
designed to enhance the precision of frequency
offset detection and correction. The first step,
called frequency acquisition, uses an Fast Fourier
Transform (FFT)-based power spectral density
estimation to detect initial frequency offsets by
locating frequency pilots from the Digital Radio
Mondiale (DRM). In the second step, frequency
tracking, the synchronization process is refined
by measuring phase changes between consecutive
OFDM symbols, constantly adjusting any

residual errors. This approach also accounts for
sample rate offsets by analyzing frequency
deviations from multiple pilots. While effective,
it requires averaging over several symbols to
reduce errors due to fading and noise. Shin, Seo,
and You [6] explored SFO estimation in OFDM-
based Digital Radio Mondiale systems and
proposed two key algorithms. Algorithm A
estimates SFO by wusing phase differences
between adjacent Frequency Reference Cells
(FRCs), enhancing accuracy through temporal
correlation. Algorithm B extends this by
including differential relations between FRC
indices, improving estimation precision. The
authors also introduced a Low-Complexity
Estimation technique, which simplifies the
process by using only the first and last noise
measurements, reducing computational
requirements. Shim et al. [7] put forward a two-
step synchronization method to tackle key issues
in OFDM-based FM broadcasting systems,
including timing offset, carrier frequency offset,
and sampling frequency offset. The first phase,
pre-FFT  synchronization, estimates symbol
timing via cyclic prefix correlation and computes
fractional frequency offset by examining phase
differences between the cyclic prefix and the
useful section of the OFDM symbol. The second
phase, post-FFT synchronization, refines the
frequency offset estimation by wusing time
reference cells for integer frequency offset
determination and further tracks residual
frequency offset and SFO with gain reference
cells. Importantly, the mitigation of SFO in this
method is achieved using a post-FFT technique
that calculates phase differences, leading to more
precise estimations. Jung and Young-Hwan You
[8] proposed a resilient SFO estimation technique
for OFDM systems operating in frequency-
selective fading channels. Their method
incorporates two essential techniques: temporal
correlation and frequential correlation. The
temporal correlation method utilizes the
relationship between received pilot symbols to
reduce the impact of unknown channel responses,
mitigating the effects of time-varying channel
conditions. On the other hand, the frequential
correlation method enhances accuracy by taking
advantage of the symmetry of pilot subcarriers
around the DC carrier, effectively eliminating
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bias introduced by frequency-selective fading.
The combination of these two techniques
strengthens the robustness of the SFO estimation,
making it more resistant to challenging channel
conditions.

Harish, Chuppala, Rajasekar Mohan, and
R. Shashank [9] proposed a technique for
estimating and correcting Sampling Frequency
Offset (SFO) in OFDM receivers, building on the
assumed proportional link between SFO and
Carrier Frequency Offset (CFO). Their method is
based on the premise that both the receiver's
sampling clock and its carrier frequency oscillator
share the same reference source, establishing a
mathematical correlation between CFO and SFO.
The process begins by estimating the CFO using
training sequences within the received OFDM
frame, applying autocorrelation methods. Once
the CFO is determined, the SFO is derived using
the equation ofc/fc = 8fs/fs, enabling systematic
correction of errors caused by SFO. The
correction is performed in the frequency domain
by applying a phase compensation factor to the
FFT output, improving synchronization without
the need for complex hardware clock recovery
systems. While computationally efficient, this
approach assumes that both oscillators are
derived from the same reference, which might not
hold true in practical scenarios. Hsiao et al. [10]
introduced a clock synchronization approach for
OFDM-based communication systems, focusing
on estimating and correcting SFO within the
frequency domain. Their technique involves
observing phase rotation across OFDM
subcarriers to estimate the SFO, offering a
computationally efficient method for
synchronization. However, the study does not
include a direct comparison with other existing
SFO estimation methods, making it difficult to
assess the relative performance of this approach.
Moreover, the method might be sensitive to
varying channel conditions, which could affect its
robustness in  real-world implementations.
Another drawback is the assumption of a free-
running analog-to-digital converter (ADC), which
might not be compatible with all hardware
configurations, limiting its practical use in OFDM
systems. Liu et al. [11] performed an in-depth
examination  of  various  synchronization

algorithms for OFDM systems, specifically
targeting symbol timing synchronization, carrier
frequency synchronization, and sampling clock
synchronization. Their study reviews a range of
methods, such as the Schmidl & Cox (SCA)
algorithm, the Minn algorithm, pilot-based carrier
frequency synchronization, and the Maximum
Likelihood algorithm, to evaluate how effectively
they address timing and frequency offset
correction. Additionally, the paper proposes
mitigating SFO using interpolation filters, which
adjust the sampling moments at the receiver post-
detection, helping to reduce synchronization
errors caused by SFO. Kumar [12] investigated
frequency synchronization in frequency-domain
OFDM- Index Modulation (IM)-based Wireless
Local Area Network (WLAN) systems,
suggesting an autocorrelation  matrix-based
technique to estimate frequency offsets. This
approach monitors phase distortions, allowing for
more accurate synchronization by compensating
for SFO as timing drift accumulates across
multiple symbols. By exploiting autocorrelation
properties, this method improves synchronization
accuracy, potentially boosting overall system
performance in WLAN environments.

The authors in [13] proposed a
synchronization system for MIMO-OFDM based
on Extreme Learning Machines (ELM),
structured in two stages. In the first stage, an
ELM network was used to estimate the residual
symbol timing offset (RSTO) by processing
preamble signals that were intentionally corrupted
with known timing offsets during training. This
was preceded by a preliminary coarse timing
synchronization using traditional autocorrelation
methods. In the second stage, another ELM
network estimated the residual carrier frequency
offset (RCFO) by analyzing phase distortions in
the received preamble signals, which had also
been trained with synthetic frequency offsets.
Both ELM modules used the known preamble
structure as a reference, processing the received
signals after the initial coarse synchronization.
The system generated its training data by
deliberately introducing controlled timing and
frequency offsets to the standard preamble
signals, eliminating the need for actual channel
conditions during the training phase. In [14], the
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authors introduced machine learning based
techniques to mitigate channel impairments in
OFDM and Non-Orthogonal Multiple Access
(NOMA)-OFDM systems, addressing issues like
channel distortion, carrier frequency offset,
sampling frequency offset, nonlinear distortion
(NLD), and frequency-selective fading. The study
employed neural networks (NNs), recurrent NNs
(RNNSs), and long short-term memory (LSTM)
models for tasks like channel estimation,
equalization, and joint CFO-SFO estimation and

135

compensation. Moreover, ML techniques were
proposed to tackle NLD caused by power
amplifier nonlinearities. For NOMA-OFDM
systems, the approach replaced traditional
Successive Interference Cancellation (SIC)-
assisted detection with an ML-driven receiver.
These techniques were evaluated through
simulations across a range of channel conditions.
Table 1 summarizes the previous work on SFO
removal.

Table 1 : Survey Summary

Authors

Synchronization Problem

Proposed Technique

Drawbacks / Notes

V. Fischer and
A. Kurpiers [5]

W.-J. Shin, J.
Seo, and Y.-H.
You [6]

E.-S. Shim, et al.
[7]

Y.-A. Jung and
Y.-H. You [8]

H. Chuppala, R.
Mohan, and R.
Shashank [9]

C.-Y. Hsiao, et
al. [10]

M. Liu, et al.

Frequency
Synchronization

Sampling Frequency offset

Timing Offset (TO), CFO,

and SFO

Sampling Frequency offset

Sampling Frequency offset

Sampling clock offset

Symbol timing, CFO, and

The process consists of two distinct
stages: first, frequency acquisition is

achieved using FFT-based power
spectral  density  estimation, and
second, frequency tracking s

performed through phase increment
measurement. To account for sample

rate  offsets, frequency deviation
analysis is employed for precise
adjustments.

Two algorithmic approaches: (A)
Phase differences between adjacent
FRCs leveraging temporal correlation,
(B) Differential relations among FRC
indices for precision. Introduces a low-
complexity estimation method.

Two-stage approach: Pre-FFT
synchronization using CP correlation
and phase differences; Post-FFT
synchronization  involving  integer
frequency offset estimation and
reference cell-based tracking.

Uses temporal correlation between
received pilot symbols and frequency
correlation among pilot subcarriers to
mitigate bias from frequency-selective

fading.

Estimates CFO via autocorrelation,
then  computes SFO  through
proportionality equations. Corrects

SFO-induced errors in the frequency
domain  with  FFT-based phase
compensation.

Uses phase rotation across OFDM
subcarriers in the frequency domain for
SFO estimation.

Compares different synchronization

Requires averaging
multiple  symbols to
counteract noise-induced
errors.

Assumes a  shared
reference  source for
carrier and sampling

oscillators, which may
not always hold.

No performance
comparison with other

methods; potential
sensitivity to channel
conditions; assumes a

free-running ADC.
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[11] Sampling clock
synchronization

N. Kumar [12] Frequency synchronization

Liu, Jun, et al. Timing and Frequency

[13] Synchronization in
MIMO-OFDM

Singh, Channel Distortions,

Abhiranjan, and Synchronization Errors,

Seemanti Saha NLD, Multi-User

algorithms (Schmidl & Cox, Minn,
Pilot-based, Maximum Likelihood).
Suggests  SFO  correction  via
interpolation filters.

Autocorrelation matrix-based method
for frequency offset estimation and
SFO compensation.

Employs a dual- ELM framework,
where one ELM refines timing
estimates and another  corrects
frequency offsets using preamble
signals with synthetic impairments.
Machine Learning (NNs, RNNs,
LSTMs) used to address channel
distortion, CFO/SFO, and nonlinearity

[14] Interference

in OFDM/NOMA-OFDM systems.

II1. PROPOSED METHOD
This section on the proposed method is
structured into two parts. Subsection A presents
the impact of the SFO on system performance,
while subsection B presents both the proposed
and conventional methods used to counteract this
effect.
A. Analyzing the Influence of SFO on
OFDM System
Define S[k] as the frequency-domain
symbols, which correspond to the modulated data
on the subcarriers, with k ranging from 0 to N—1,
where N denotes the total number of subcarriers.
The corresponding time-domain signal, s[n], is
given by:

1 N-1
s[n] = Nz S[k]e/?mkn/N
=0

n=01,....,N—-1
The signal, r[n], at the receiver is influenced by
the sampling frequency offset. When there is a
discrepancy between the receiver's sampling
frequency, fs', and the transmitter's sampling
frequency, fs, represented by the difference Afs =
fs' - fs, the time-domain expression of the
received signal can be described as follows:

1)

r[n] =g (n_ ]{_j) ej2m§n/N + n[n] (2)

The normalized sampling frequency offset is
denoted by & = Afs/fs, while n[n] stands for the
additive noise. In the receiver's frequency
domain, the symbols in the frequency domain are

retrieved as follows:

=

— _ @)
R[k] = ) r[n]e/2mkn/N

=0

ime-domain expression:

— 3

Replacing r[n] in the

=

RS (5(n.L5) ermrnm @

0

3
I

+ n[n]) e—j2nkn/N

An alternative way to write this would be:

R[k] (5)
N-1
= Z S (Tl f_S) ejZnen/N e—jznkn/N
-fS'
n=0
+ E[k]

=[K] represents the frequency-domain
representation of the noise, obtained by applying
the FFT to n[n].

The SFO appears in the frequency
spectrum through two primary effects. The first is
subcarrier leakage, or inter-carrier interference,
which breaks the orthogonality between the
subcarriers. This phenomenon can be represented
mathematically as:
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R[k] (6)
= S[k]. H[k] smc(ne)
+ z S[m smc(n(e +m— k))

m=k

+ Z[k]

In this context, H[k] denotes the frequency
response of the channel, while the sinc function
accounts for the interference caused by adjacent
subcarriers. Second, SFO induces a phase shift
that increases linearly as the subcarrier index k
progresses:

101 F

1072}

Bit Error Rate

~&— SFO =0 ppm
-~ @ - SFO =25 ppm

SFO = 32 ppm
M= SFO = 40 ppm
- W = SFO =50 ppm

SFO =64 ppm
4| |=-#-=SFO=75ppm
- W = SFO =100 ppm

10

0[k] = 2me % Q)

Accurate phase rotation compensation is essential
for proper demodulation of the received signal.
The presence of phase rotation and frequency
offset degrades system performance, emphasizing
the critical role of precise SFO estimation and
correction in OFDM systems. The next figure
demonstrates the impact of SFO on the

performance of a 16QAM-OFDM system through
simulation.

0 2 4

6

Eb/No (dB)

Fig. 1: Effect of SFO on the BER in a 16QAM-OFDM Communication System

As  expected, Figure 1—generated in
MATLAB—shows the characteristic BER
performance of a 16QAM-OFDM system with 32
subcarriers and 150 OFDM symbols under
varying sampling frequency offsets. The figure
illustrates that increasing SFO introduces
performance degradation, reflected in rising BER
values even at high Eb/No levels. Larger offsets
yield progressively flatter BER curves, deviating
from the ideal SFO = 0 ppm case and reaffirming
the well-known sensitivity of OFDM systems to

frequency mismatches.
B. Methods for Counteracting SFO Effects:
Conventional-Hybrid ~ vs.  Proposed
Approach
This subsection is structured into five parts.
The first four introduce benchmark methods for
SFO estimation, while the fifth presents the
proposed approach. A summary of all methods is
provided as follows:
B.1. Phase Difference (PD) Method

This technique, based on the SFO
estimation method outlined in [5], calculates the
SFO by examining phase shifts across subcarriers
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in the received signal's frequency domain. Given
that SFO causes phase rotations that vary with
subcarrier indices, a reference subcarrier is
chosen, and the phase differences relative to it are
measured to determine the frequency offset. The
phase difference between subcarrier m and the
reference subcarrier ref is given by:
0., = £R[m] — £R[ref] (8)
The phase of the received symbol at subcarrier m
is denoted as ZR[m)].
The SFO value is subsequently calculated as:
1 <« 6, ©)
1= 2N ; m—ref
m#ref
where N is the number of subcarriers. To enhance
the accuracy of the estimation, a weighting
scheme is applied to modify this process.
B.2. Correlation-Based (CB) Method
The correlation-based technique, which is
based on the SFO estimation method outlined in
[7], calculates SFO by utilizing the phase
connection between consecutive subcarriers in the
received OFDM signal. As the phase distortion
induced by SFO builds up progressively across the
subcarriers, a detectable phase correlation emerges
between neighboring subcarriers. This phase
correlation between adjacent subcarriers is
expressed as follows:
0,, = £(R[m]R*[m — 1]) (10)

The term R*[m — 1]represents the complex
conjugate of R[m — 1], while 6,, denotes the
phase difference between neighboring subcarriers.
When averaged across all subcarriers, the result is:

1 1 v (11)

2NN — 3 Om

m=3
Where €&,is the estimated SFO.
B.3. Phase Difference \Weighted by
Subcarrier Index (PD-WSI) method
This technique, based on the SFO
estimation methods outlined in [9,15,16],
calculates the SFO by examining the phase shift
between consecutive OFDM symbols. Unlike
traditional methods that rely solely on the phase
difference, this approach incorporates a weighting
scheme tied to the subcarrier index. The rationale
behind this weighting is that subcarriers with
higher indices undergo a greater phase rotation
caused by SFO, enhancing the accuracy of the

é2=

estimate. The estimation process is outlined
below:

20, [m] = < (%) (12)
7271 1 N-1
& = Z ! ﬁz A@,[m]
lz_% m=1
€3 =83 %C3

Where R;[m] is the received OFDM symbol at
subcarrier | and symbol m in the frequency domain
(assuming symbols equal subcarriers in count).
The term A®;[m] indicates the phase difference
between consecutive symbols at subcarrier I, while
&, Is the weighted total of these phase differences.
C5 refers to the scaling factor, and é; denotes the
estimated SFO.

B.4. Hybrid Estimation (H-EST)
Method
The Hybrid SFO Estimation approach is
designed to accurately estimate the Sampling
Frequency Offset in OFDM systems by
leveraging both time-domain and frequency-
domain correlations across all subcarriers. This
method builds directly from the estimation
approach introduced in [9]. The resulting

estimation for the SFO is expressed as follows:
N, (13)

[ (RiIm+1]
b = Z A( Rz[m] >

R;[m + 1]
+ k.2 <—Rl[m] >>

€, =8,%Cy

The index k; identifies the frequency bin
associated with subcarrier | (assuming symbols
equal subcarriers in count), while €, captures the
phase shift resulting from both time and frequency
correlation. The term C, serves as a scaling
parameter, and €, represents the estimated SFO.
B.5. Proposed Classifier-Based SFO
Estimators
In our proposed method, we chose a
classifier-based framework to estimate the
sampling frequency offset. This approach stands
apart from traditional techniques that typically use

Benha Journal of Applied Sciences, Vol. (10) Issue (4) (2025)



Moatasem M. E. Kotb, Maha R. Abdel-Haleem, A.Y.Hassan, and Ashraf S. Mohra 139

closed-form solutions or iterative processes, as it
utilizes optimized feature mappings to better
capture nonlinear patterns, ultimately improving
estimation accuracy and robustness. To further
increase the precision and reliability, we
incorporated several classifiers, a common practice
in machine learning to identify the most suitable
solution. Additionally, we focused on achieving
the best performance while  minimizing
computational complexity. As such, we avoided
resource-heavy models like Convolutional Neural
Networks (CNNs). This led us to introduce three
distinct SFO estimators, each named according to
the classifier used: Kernel Support Vector
Machine (KSVM)-based, LDA-based, and ANN-
based SFO estimators.

This subsection is organized into three parts:
subsection B.5.1. introduces the classifiers used in
the proposed SFO estimators, subsection B.5.2.
describes the dimensionality reduction technique
applied, and subsection B.5.3. presents the training
set used for the classifier-based estimators.

B.5.1. Classifiers-used in the SFO
estimators

The classifiers are described in detail as
follows:

B.5.1.1.  Linear
analysis
LDA classification involves building a
discriminant analysis model that predicts
outcomes by considering factors like posterior
probability, prior probability, and associated
costs. The primary objective is to assign
observations to the correct class while reducing
the overall classification cost. This optimization
process can be accomplished by [17,23,24]:
K

discriminant

(14)
9 =argmin,,_x » PlCHI0
k=1

In this context, K represents the total number of
classes, while J denotes the predicted
classification. The term C(y|k) signifies the cost
associated with assigning an observation to class
y when its actual classification is k. Meanwhile,
P(k|x) refers to the posterior probability that an
observation belongs to class k.

Our approach employs LDA to estimate

the SFO. The estimation framework relies on LDA
to classify specific features—detailed at subsection
B.5.3.—into predefined classes, each
corresponding to a distinct SFO value. A crucial
aspect of this process is dimensionality reduction,
which helps minimize computational complexity
while preserving essential SFO characteristics for
optimal training and classification. Additionally,
feature selection ensures that the retained features
effectively capture the SFO behavior in the signal.
Notably, the dimensionality reduction and feature
selection techniques applied remain consistent
across all ML-based estimators, ensuring
uniformity in feature representation and facilitating
fair performance comparisons. To maintain
numerical stability and ensure accurate LDA
classification, we apply the pseudo-inverse of the
covariance matrix, effectively mitigating issues
arising from ill-conditioned matrices. The model
undergoes training across multiple frames,
allowing it to adapt dynamically to fluctuating
channel conditions for improved robustness. Once
classification is complete, the resulting outputs are
mapped back to their respective SFO values using
a predefined lookup table, thus completing the
estimation process.
B.5.1.2. Kernel support vector

machine

A kernel support vector machine extends
the capabilities of a linear SVM by applying
kernel functions, which transform non-linear data
into a higher-dimensional space where it becomes
linearly separable. This transformation enables
the algorithm to construct an optimal hyperplane
that maximizes the margin between classes, even
in cases where the data exhibits complex, non-
linear patterns. The decision function of an SVM
is formulated as [18,23,24]:

N

(15)
f(x) = sign (Z a;y;K(x;,x) + b)

i=1
In this context, y; denotes the class labels
associated with the support vectors x; while, «;
represents the Lagrange multipliers. The term b
corresponds to the bias, and the function K (x;, x)
serves as the kernel function. Specifically, our
method employs the Radial Basis Function (RBF)
kernel, which is expressed as [21]:

K(x;, x) = exp(=yllx; —xII?) ~ (16)
In this context, y is a positive kernel parameter

Benha Journal of Applied Sciences, Vol. (10) Issue (4) (2025)



140 Mitigating Sampling Frequency Offset in OFDM: A Comparative and Machine Learning-Based Approach

that determines how much impact a single
training instance has on the model. A higher y
results in decision boundaries that are tightly
shaped around individual data points, leading to
more precise but potentially  overfitted
classifications. Conversely, lower vy values
produce broader, more generalized decision
regions. The RBF kernel enhances SVMs by
mapping data into a higher-dimensional space,
enabling them to capture complex, non-linear
patterns and achieve linear separability in that
transformed space.

Here, we apply the KSVM to predict the
SFO. To capture the complex relationships
between features and their classes, we use the
RBF kernel, which creates nonlinear decision
boundaries. The KSVM categorizes the selected
features, outlined at subsection B.5.3., into classes
that each represent a specific SFO range, which is
mapped in a table. The model is trained across
multiple frames to adapt to varying channel
conditions, ensuring reliable performance. After
classification, the results are mapped to the
corresponding SFO values using a predefined
table, completing the estimation process.

B.5.1.3. Artificial neural network

The Multilayer Perceptron (MLP) is
employed to predict SFO based on the received
signals. It consists of an input layer, one or more
hidden layers, and an output layer, with the goal
of classifying the signals using the
Backpropagation method. During forward
propagation, the input is passed through the
network, generating the output. In backward
propagation, the error is computed and the
network's weights are adjusted to minimize the
error. Key elements like activation functions and
weights are essential for mapping the input to the
output. The training of the network involves
iterating through forward and backward
propagation cycles to fine-tune the weights and
reduce the prediction error.

The output of the jth neuron in the (k+1)
layer is determined by a weighted sum of the
outputs from the neurons in the kth layer, followed
by an activation function. The activation function,
denoted as R, processes the sum of the weighted
inputs. The parameters involved include Mk ,
which represents the number of neurons in the kth

layer, Wl&kﬂ), the weight connection between the
ith neuron in the kth layer and the jth neuron in the
(k+1) layer, and x{‘ , the output of the ith neuron in

the kth layer. This relationship is expressed as
[19,23,24]:

(e+1) }Mk: (e+1) ()
+1 k+1
V=R ( W x{‘)

i=

0
The error function is described by [17]:

1 Mk
E= EZ(xf — dky?
7=0

In the kth layer, the desired output of the jth

neuron is given by d}‘, while its actual output is

xk.

. During the training phase, the Bayesian
regularization back-propagation algorithm is
applied, specifically leveraging the Levenberg-
Marquardt optimization method [20] to update the
weights and biases. The goal of this process is to
fine-tune the weights and minimize the error
between predicted and actual outputs. The
Levenberg-Marquardt optimization is a popular
method in numerical optimization, as it combines
the advantages of both the Gauss-Newton and
gradient descent methods, thus proving effective in
minimizing nonlinear objective functions.

Our approach uses an MLP neural network
to predict the SFO. The network is designed with
multiple hidden layers to model the complex
relationships between signal features, which
include the received signal characteristics
subjected to the effect of both SFO impairment
and the channel, and the corresponding SFO
values. During training, the model adjusts its
weights iteratively through optimization to map
inputs to accurate SFO predictions. Training
continues over several epochs, enabling the model
to learn the data's underlying patterns. Once
trained, the MLP predicts the SFO, completing the
estimation process.

B.5.2. Dimensionality
Techniques
We utilized two matrix dimensionality reduction
techniques: principal component analysis and
singular value decomposition. The techniques are
illustrated as follows:

B.5.2.1. Principal component

(18)

Reduction

analysis
PCA is a mathematical technique used to
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reduce the dimensionality of a high-dimensional
dataset by projecting it onto a lower-dimensional
subspace. This is achieved by determining a new
set of orthogonal basis vectors, known as principal
components, which capture the directions of
maximum variance in the data. The transformation
preserves the most critical structural information
while eliminating less important dimensions [21].

The steps we followed to apply PCA are outlined
as follows:

Step 1: Centering the input

PCA requires the input to be

zero-mean. This step subtracts

the mean of each row (row-wise)

from the input.

X=X-1u (19)

Where X is the original input, u is

the mean along each row, and X

is the centered X.

Step 2: Compute Covariance

Matrix

The covariance matrix is

computed as:

c =XxH (20)
Where X" is the conjugate
transpose (Hermitian) of X, and
C is the covariance matrix.
Step 3: Eigen Decomposition
Eigen decomposition extracts the

principal components

(eigenvectors) corresponding to
the largest eigenvalues as:
CcV=VvA 1)
Where A% contains the
eigenvectors (principal
components), and A is a
diagonal matrix of eigenvalues.
Step 4: Project input onto
Principal Components
Transforms the original input
matrix into the lower-
dimensional space defined by the

principal components.

Z=VHxX (22)
Where VH is the conjugate
transpose of the eigenvectors,

and Z is the reduced output
matrix.
Note the input matrix here is the
frequency domain signal after
being affected by certain SFO
and the channel effect.
B.5.2.2. Singular value decomposition
SVD is a matrix factorization method that
decomposes a  matrix X € R™® into  three
components [22]:
X =UzvT (23)
Where U € R™" is the orthogonal matrix (left
singular vectors), £ € R™® is the rectangular
diagonal matrix of singular values oy = 0, = -+ >
0, and V € R%*? is the orthogonal matrix (right
singular vectors). The singular values og; are the
square roots of the eigenvalues of X7 X or XXT.
To approximate X with rank k, we use:
X = U V¢ (24)
Where U, € R, %, € R¥**, and V,, € Rk,
The process we used is defined in the following

steps:

Step 1: Center the input
Subtract the mean from each
feature (row-wise) to center the
input around zero. Essential for
both PCA and SVD to focus on
variance rather than bias.

X =X -E[X] (25)
Where X is the original input
matrix, and E[X] is the mean
along rows.
Step 2: Compute SVD
Factorizes the centered matrix
into singular vectors and values,

then computes a reduced SVD.

X =usvt (26)
Where U is the left singular
vectors, S is the diagonal matrix
of singular values, and V is the
right singular vectors.

Step 3: Truncate to “target
dimensions” Components
Retains only the top k singular

vectors/values (most significant
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directions) and discards smaller

singular values.
U,=Ul[:1:k], S, =S[1:k,1:k] (27)
Where k is the target dimensions.
Step 4: Project input onto
Reduced Basis
Projects the original (uncentered)

input onto the top k singular

vectors.
Z =Ulx (28)
Where Z is the reduced matrix,
and U} is the conjugate
transpose of the top k singular
vectors.
B.5.3. Construction of the Training Set
for Machine Learning-based SFO Estimators
To enable data-driven estimation of the SFO,
we construct a training set that captures the
relationship between received OFDM
signals (affected by SFO and channel then
reduced) and their true SFO values. Below, we
formalize the mathematical representation of
the inputs (features) and targets (labels) used for
training the proposed ML-based estimators.
e Input Features
For each sample 1, the input is
constructed as:
1Z:|  2(Z)] (29)
max(|Z;|)" ©
Where X; is the input feature
vector, and Z; is the
dimensionality-reduced
output matrix.

X; = |Re(Z),Im(Z;),

e Targets (True SFO

Values)

The targets are the true SFO
values (in ppm) for each
sample:

R i (30)
where t; is repeated for each
channel realization. The input
feature set and corresponding
target values are used to train
the models, enabling them to

predict € for new inputs, with

a table mapping classes to

their respective SFO values

in KSVM and LDA.

Our approach to feature-target training
is  highly efficient because it reduces
computational complexity while preserving the
key characteristics essential for accurately
estimating the SFO. By focusing on the most
relevant features and minimizing unnecessary
dimensionality, we maintain the critical
information needed to model both amplitude and
phase distortions. This enables us to achieve high
estimation accuracy while ensuring the process
remains computationally efficient.

I'V. RESULTS AND DISCUSSION

The MATLAB-based implementation of
the proposed estimation methods and simulation
setup is discussed in this section, which is
organized into two subsections. In subsection A,
the methodology for evaluating various SFO
estimation approaches is described. Subsection B
provides a detailed comparison of the results
obtained from each method under the same test
conditions.

A. Performance Assessment Framework
All techniques were evaluated using Monte
Carlo testing, supplemented by BER curve
analysis for comparative assessment. The Monte
Carlo testing procedure is outlined as follows:
1. Configuration Phase
e  Total simulation trials: M=
10,000
e  Error tracking variables are
zero-initialized for  each
estimator: PD, CB, PD-WSI,
H-EST, LDA-based, KSVM-
based, and ANN-based SFO

estimators
S RMSE, = 0 @)

m € {PD, CB, PD-WSI, H-EST,
LDA—based, KSVM—based, and
ANN-—based SFO estimators}

2. Trial Execution Loop
For every trial i (1 <i<M):
a) Parameter Sampling
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e Randomly draw true SFO value Z RMSE,, (33)
€' from a uniform M
distribution across the - Z(E(z’)
operational range. i1
e® ~ P(e) (32) —¢y2
b) Signal Processing
e Apply the selected SFO to an b) Final Metric Computation
OFDM distorted signal (by the e Post-simulation, root-mean-
channel) square error is derived as:
e Transform the signal to
frequency domain (34)

representation

3. Estimation Phase

e Each algorithm m computes its

SFO estimate ¢1¢ 1 )

4. Error Quantification

a) Cumulative Error Tracking

e For every estimator m:

% A RMSE

M
f1 o
Z RMSE,, = MZ(E(L) _ ey2
i=1

e The percentage improvement
(reduction) in  RMSE is
calculated as:

(35)

_ Final RMSEbaseline method — Final RMSEimproued method

The

configuration

Final RMSEbaseline method

x100

of all hyperparameters

employed in the proposed method is outlined in

Table 2.

Table 2: The Hyperparameters Table

Name Hidden Layers and Features and Classes Back-propagation Additional
Activation Functions and training Notes

LDA- N/A » Features: e Trained on Pseudo-
based The features and targets for training 1:25  frames inverse for
SFO the estimator are: (depending on covariance

estimator X; the channel) matrix

_|rez), Im(z) |Z;| 2(Z;) inversion.
T max(izi)
Ssam es
E= {ti}i=1 Pt
» Classes:

e 100 Class (SFO=0:100ppm).
A lookup table is used to set the
targets to a class sets, then this table is
saved, and used when the model is
applied.

KSVM- N/A e Features: e Trained on RBF
based The features and targets for training 1:25  frames kernel.
SFO the estimator are: (depending on

estimator X; the channel)

— |Re(z), 1m(z)) 1zl «(Zy)
v “"max(|Z;])’ w
Ssam es
€= {ti}izl vt
> Classes:

e 100 Class (SFO=0:100ppm).
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A lookup table is used to set the
targets to a class sets, then this table is
saved, and used when the model is
applied.
ANN- o 3 Hidden » Features: Levenberg-
based Layers. The features and targets for training Marquardt
SFO Number of neurons in the estimator are: with Bayesian
estimator each layer h = X; regularization
n Z; 2(Z;
[21_-1] t1,i=1 = |Re(Z),Im(Z;), = ) 2 Trained  on
Where n is the number max(|Z;))" m :
of  subcarriers l € = {t;) semetes lizs  EIEE
. ti=1 (depending on
represents the hidden the channel)
layer index. > Classes: ’
(e.g., with three hidden e 100 Class (SFO=0:100ppm).
layers and 32

subcarriers, the neuron
distribution is: 33, 17,
and 9 neurons,
respectively)
Activation Functions=
Hyperbolic ~ Tangent
Sigmoid (Hidden),
Linear (Output)

B. Sampling frequency offset estimation result

Figure 2 illustrates the Monte Carlo RMSE
performance of the SFO estimation methods under
different SNR conditions. It is evident that
machine learning-based methods, particularly the
LDA-based and ANN-based estimators, achieve
significantly lower RMSE values compared to
traditional approaches, demonstrating superior
estimation accuracy and robustness to noise.
Among all the methods, the LDA-based estimator
consistently performs the best across all SNR
levels. In contrast, traditional techniques like PD
and CB exhibit the highest RMSE, indicating poor
performance, especially in low SNR scenarios.
Hybrid methods such as PD-WSI and H-EST
show moderate performance, offering a
compromise between complexity and accuracy.
Overall, the results highlight the effectiveness of
ML-based approaches in SFO estimation,

especially under challenging noise conditions.
Figure 3,4, and 5 show the Bit Error Rate
performance of the SFO methods as a function of
Eb/No (energy per bit to noise power spectral
density ratio). Among all the methods evaluated,
the ANN-based, LDA-based, and KSVM-based
SFO estimators demonstrate performance that
closely matches the Ideal case, indicating excellent
estimation and compensation capability with
minimal BER degradation. In contrast, traditional
methods like PD and CB show significantly higher
BER, suggesting less effective handling of SFO.
The PD-WSI and H-EST methods perform
moderately better than PD and CB but still fall
short of the machine learning-based estimators.
Overall, the three plot clearly highlights that ML-
based approaches substantially improve BER
performance, making them more reliable for
robust communication.
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Fig. 2: Comparative Analysis of Monte Carlo RMSE Under AWGN Conditions
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Table 3: Simulation Parameters for Flat and Frequency-Selective Rayleigh Fading Channels

Parameters (Normalized

Frequency-Selective

Frequency-Selective Rayleigh Fading Channel 2

System) Rayleigh Fading Channel 1
Doppler Shift (x Rs) Hz 1 3
Number of Multipath 5 8
Components
Path Delays (sec) [0,0.3Ts,0.7Ts,1.5Ts,2Ts] [0,0.2Ts,0.5Ts,0.9Ts,1.3Ts,1.8Ts,2.5Ts,3Ts]
Average path gains (dB) [0,-3,-6,-9,—12] [0,—4,-8,—-12,-16,—20,—25,-30]

H-EST
PD-WSI
CB

PD
KSVM
ANN
LDA

Methods

0 0.002 0.004

0.006 0.008 0.01 0.012

Average Execution Times (seconds)

Fig. 8: Average execution times when the training is executed offline

Figures 6 and 7 illustrate the percentage
improvement in SFO estimation under Fading
Channels 1 and 2, respectively, as outlined in
Table 3, using the methods evaluated across SNR
levels of 20 dB, 15 dB, 10 dB, and 5 dB. Both
LDA-based and ANN-based estimators achieve
high accuracy, consistently delivering over 88%
improvement across all baselines (PD, CB, PD-
WSI, and H-EST). The LDA-based SFO estimator
shows slightly better performance than the ANN at
higher SNRs, particularly under clean channel
conditions. KSVM-based SFO estimator, although
effective at higher SNRs, show a marked decline
in improvement under fading conditions, dropping
to around 50% against the PD baseline at 5 dB,
indicating sensitivity to channel degradation.
Overall, while LDA may offer a slight edge in
optimal conditions, ANN stands out for its
consistent reliability across a range of SNRs,
outperforming conventional and hybrid techniques
in challenging fading channels. Both SVD and
PCA are effective dimensionality reduction
techniques that preserve the essential variation

needed for accurate SFO estimation, while
significantly reducing processing time and
computational cost. PCA demonstrated superior
average performance, showing an improvement of
approximately 37.91%, whereas SVD achieved the
lowest average processing time, reducing it by
about 96.14%. PCA is particularly effective at
retaining critical variance for higher estimation
accuracy, while SVD provides substantial
computational savings, especially in complex
fading environments. However, under favorable
channel conditions, both methods perform
similarly in terms of performance, making SVD a
suitable option when the channel is stable and less
noisy. Figure 8 reports the inference latency of
various SFO estimators, averaged over 10,000 runs
on a system with an AMD Ryzen 5 5600G (3.90
GHz) and 16GB RAM, excluding training time.
The PD, CB, PD-WSI, H-EST, and KSVM-based
methods demonstrate low execution times,
whereas the LDA- and ANN-based estimators are
notably slower, with the ANN-based method
exhibiting the highest latency. From figure 8 we
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can understand that, Although KSVM does not
match the high estimation accuracy of ANN and
LDA, it delivers more reliable performance than
both hybrid and conventional methods in
challenging environments with significantly lower
computational time than ANN and LDA. In real-
world applications, selecting an appropriate
estimator involves navigating trade-offs between
accuracy, computational overhead, and processing
speed. The optimal choice depends heavily on the
specific use case—systems that require precise
estimation may tolerate higher computational
demands, whereas environments with limited
processing power or energy availability favor
lightweight, efficient solutions. Ultimately, the
estimator must be chosen in accordance with the
system’s operational constraints and performance
goals.

V. CONCLUSION

This study comprehensively evaluated
various sampling Frequency Offset estimation
methods under diverse SNR conditions and
channel environments. The results consistently
demonstrate the superiority of machine learning-
based approaches—particularly LDA-based and
ANN-based estimators—over traditional and
hybrid techniques. These ML methods achieved
significantly lower RMSE and BER values,
indicating enhanced estimation accuracy and
robustness to noise and fading effects. Among
them, the LDA-based estimator delivered the best
overall performance, especially at higher SNRs,
while the ANN-based approach showed
remarkable  consistency across all tested
conditions. The KSVM estimator also showed
promising results at higher SNRs but was more
sensitive to degradation under fading channels. In
contrast, traditional methods such as PD and CB
were significantly less effective, especially in low-
SNR and fading environments. Hybrid methods
like PD-WSI and H-EST offered a balanced
performance but did not match the reliability and
accuracy of ML-based solutions. Dimensionality
reduction techniques, namely PCA and SVD,
played a crucial role in enhancing the
computational efficiency of the ML models. While
PCA stands out for its enhanced estimation
accuracy—delivering an average improvement of
around 37.91%—SVD takes the lead in efficiency,

cutting average processing time by roughly
96.14%. Nevertheless, when channel conditions
are stable and relatively free of noise, the
performance gap between the two narrows
considerably, allowing for flexible method
selection based on system priorities rather than
performance differences. In conclusion, ML-based
SFO  estimators, supported by effective
dimensionality reduction techniques, provide a
powerful solution for robust and accurate
synchronization in modern communication
systems. The choice of estimator should ultimately
align with the specific system requirements,
balancing accuracy, latency, and computational
resource availability.
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