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Abstract 

This paper addresses the critical issue of Sampling Frequency Offset (SFO) in Orthogonal 

Frequency Division Multiplexing (OFDM) systems, which arises from mismatches between the sampling 

rates of the transmitter and receiver. Such discrepancies disrupt subcarrier orthogonality, leading to 

significant performance degradation, including Inter-Carrier Interference (ICI), phase distortion, and 

increased Bit Error Rate (BER). To ensure reliable data transmission, accurate SFO estimation and 

compensation are essential. The study examines four widely used SFO estimation techniques: the Phase 

Difference (PD) method, the Correlation-Based (CB) method, the Phase Difference Weighted by Subcarrier 

Index (PD-WSI) method, and the Hybrid Estimation (H-EST) method. Additionally, it introduces novel 

machine learning-based approaches—Linear Discriminant Analysis (LDA)-based, Kernel Support Vector 

Machine (KSVM)-based, and Artificial Neural Network (ANN)-based SFO estimators—designed to 

enhance synchronization accuracy. Comparative evaluations demonstrate that these proposed methods 

significantly outperform conventional and hybrid techniques by achieving lower Root Mean Square Error 

(RMSE), thereby effectively mitigating SFO-induced impairments and improving overall OFDM system 

performance. 
Keywords: SFO estimation, Data-Aided (DA) techniques, LDA-based SFO Estimator, KSVM-based SFO Estimator, ANN-based 

SFO Estimator.

I. INTRODUCTION 

Orthogonal Frequency Division 

Multiplexing (OFDM) has become a fundamental 

modulation technique in modern wireless 

communication, enabling high data rates, efficient 

spectrum utilization, and robustness against 

multipath fading. As a key technology, it 

underpins various applications, including 

broadband wireless networks, digital television 

broadcasting, and next-generation mobile 

communication systems like 5G and beyond. 

However, despite its advantages, OFDM is highly 

vulnerable to synchronization errors, particularly 

Sampling Frequency Offset (SFO), which can 

significantly degrade system performance if not 

properly managed [1]. SFO occurs when there is 

a mismatch between the sampling clocks of the 

transmitter and receiver. This discrepancy can 

stem from oscillator imperfections, temperature 

variations, hardware constraints, and long-term 

clock drifts. SFO induces a linearly increasing 

phase shift across subcarriers, disrupting the 

orthogonality of the system and leading to Inter-

Carrier Interference (ICI). This interference 

compromises signal integrity, ultimately 

degrading data reliability and overall transmission 

quality. 

The impact of SFO on OFDM systems is 

complex and significant. One of the primary 

effects is phase distortion, which leads to errors in 

symbol detection and an increase in the Bit Error 

Rate (BER). Additionally, SFO causes time-

domain misalignment, where the symbols 

gradually drift, resulting in reduced 

synchronization accuracy and improper sampling. 

This misalignment not only hampers data 

recovery but also diminishes overall system 

efficiency. Moreover, SFO disrupts the matched 

filter’s output by introducing phase shifts and 

timing errors, which degrade signal detection and 

lower the Signal-to-Noise Ratio (SNR). If left 

unaddressed, these issues can substantially 

degrade network performance, restricting data 

throughput and reducing the reliability of wireless 

communication [2]. To mitigate the effects of 

SFO, researchers have developed various 

estimation techniques. A widely used approach is 

pilot-aided estimation, where predefined pilot 

symbols embedded within the OFDM signal 

serve as reference points for detecting and 

correcting frequency mismatches. Another 

technique, data-aided synchronization, leverages 
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known reference data to enhance frequency offset 

estimation accuracy. Additionally, blind 

estimation methods analyze inherent signal 

properties without relying on additional reference 

symbols, making them beneficial in bandwidth-

limited scenarios. While these conventional 

techniques have improved synchronization 

accuracy, achieving precise and efficient SFO 

correction remains a significant challenge, 

particularly in dynamic environments with 

unpredictable channel variations [3]. 

Through machine learning (ML), SFO 

estimation has advanced with adaptive techniques 

that optimize synchronization accuracy. Unlike 

traditional approaches that rely on predefined 

mathematical models, ML-based methods can 

analyze vast amounts of received signal data, 

detect complex patterns, and dynamically adjust 

estimation strategies to account for changing 

wireless conditions. This adaptability makes ML 

particularly useful in environments where channel 

conditions fluctuate rapidly. One of the key 

advantages of ML in SFO estimation is its ability 

to handle nonlinear distortions and unpredictable 

variations in signal behavior. Traditional 

estimation techniques often struggle with 

inaccuracies in real-world scenarios due to 

hardware imperfections, oscillator drift, and noise 

interference. In contrast, ML algorithms can 

continuously learn from real-time data, refining 

their predictions and improving synchronization 

precision over time. This capability enables more 

resilient and efficient communication systems, 

reducing errors and enhancing overall network 

performance. Another important aspect of ML-

based SFO estimation is its potential for 

automating complex signal processing tasks. 

Conventional methods require extensive manual 

tuning of parameters and reliance on fixed 

assumptions about the communication channel. 

ML-driven approaches, however, can 

automatically extract meaningful features from 

received signals and adapt synchronization. This 

not only reduces computational complexity but 

also enhances the scalability of wireless systems, 

making ML an attractive solution for next-

generation communication technologies [4]. 

Despite its advantages, the integration of ML into 

SFO estimation comes with challenges. 

Computational demands, data availability, and 

real-time processing constraints are critical 

factors. Our research seeks to optimize ML 

models to overcome these barriers, enhancing 

efficiency and reducing computational strain. By 

leveraging the evolving capabilities of ML, we 

aim to enhance synchronization accuracy and 

contribute to the development of more robust, 

adaptive, and intelligent communication systems. 

 

In this work, we pursued three primary 

objectives: 

 Assess the impact of sampling 

frequency offset on OFDM system 

performance, with a focus on BERs. 

 Evaluate existing SFO estimation 

methods, Implement and evaluate 

existing SFO estimation methods, 

analyzing their performance, strengths, 

and limitations. 

 Develop and propose a machine 

learning-based SFO estimation 

approach that enhances accuracy, 

minimizes synchronization errors, and 

improves overall system reliability and 

efficiency. 

 

The Essential Findings and Contributions are: 

 Comprehensive Performance 

Evaluation: A detailed comparison of 

traditional, hybrid, and machine learning-

based SFO estimation methods under 

various SNR levels and fading channel 

conditions. 

 Superiority of the proposed ML-Based 

SFO Estimators: Demonstrated that 

Linear Discriminant Analysis (LDA)-

based and Artificial Neural Network 

(ANN)-based estimators achieve 

significantly lower Root Mean Square 

Error (RMSE) and BER values, 

outperforming conventional and hybrid 

approaches in both accuracy and 

robustness. 

 Analysis Under Fading Channels: 
Provided insights into estimator 

performance in realistic fading 

environments, showing that ANN and 

LDA maintain high reliability. 
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 No Need for Perfect Channel State 

Information: Demonstrated that the 

proposed ML-based SFO estimators do 

not require perfect CSI, making them 

more robust and adaptable to practical 

deployment scenarios with imperfect 

channel information. 

 Dimensionality Reduction for 

Efficiency: Principal Component 

Analysis (PCA) and Singular Value 

Decomposition (SVD) were evaluated to 

reduce computational overhead. SVD 

achieved a 96.14% reduction in 

processing time, while PCA delivered a 

37.91% improvement in estimation 

performance. 

 Latency and Implementation 

Considerations: Assessed inference 

latency across methods, highlighting 

trade-offs between estimation accuracy 

and computational speed for practical 

system deployment. 

 Potential to Replace Existing SFO 

Estimation Techniques: Given their 

superior accuracy, our proposed method 

has the potential to replace existing SFO 

estimation techniques in modern digital 

communication systems. 

The paper is organized as follows: Section II 

reviews related work, Section III introduces the 

proposed method, Section IV presents the results 

along with their analysis, and Section V 

concludes the paper with final remarks. 

II. SURVEY 
Earlier research on estimating SFO has 

involved a range of different techniques. Fischer 

et al. [5] introduced a two-step frequency 

synchronization method for Orthogonal 

Frequency Division Multiplexing receivers, 

designed to enhance the precision of frequency 

offset detection and correction. The first step, 

called frequency acquisition, uses an Fast Fourier 

Transform (FFT)-based power spectral density 

estimation to detect initial frequency offsets by 

locating frequency pilots from the Digital Radio 

Mondiale (DRM). In the second step, frequency 

tracking, the synchronization process is refined 

by measuring phase changes between consecutive 

OFDM symbols, constantly adjusting any 

residual errors. This approach also accounts for 

sample rate offsets by analyzing frequency 

deviations from multiple pilots. While effective, 

it requires averaging over several symbols to 

reduce errors due to fading and noise. Shin, Seo, 

and You [6] explored SFO estimation in OFDM-

based Digital Radio Mondiale systems and 

proposed two key algorithms. Algorithm A 

estimates SFO by using phase differences 

between adjacent Frequency Reference Cells 

(FRCs), enhancing accuracy through temporal 

correlation. Algorithm B extends this by 

including differential relations between FRC 

indices, improving estimation precision. The 

authors also introduced a Low-Complexity 

Estimation technique, which simplifies the 

process by using only the first and last noise 

measurements, reducing computational 

requirements. Shim et al. [7] put forward a two-

step synchronization method to tackle key issues 

in OFDM-based FM broadcasting systems, 

including timing offset, carrier frequency offset, 

and sampling frequency offset. The first phase, 

pre-FFT synchronization, estimates symbol 

timing via cyclic prefix correlation and computes 

fractional frequency offset by examining phase 

differences between the cyclic prefix and the 

useful section of the OFDM symbol. The second 

phase, post-FFT synchronization, refines the 

frequency offset estimation by using time 

reference cells for integer frequency offset 

determination and further tracks residual 

frequency offset and SFO with gain reference 

cells. Importantly, the mitigation of SFO in this 

method is achieved using a post-FFT technique 

that calculates phase differences, leading to more 

precise estimations. Jung and Young-Hwan You 

[8] proposed a resilient SFO estimation technique 

for OFDM systems operating in frequency-

selective fading channels. Their method 

incorporates two essential techniques: temporal 

correlation and frequential correlation. The 

temporal correlation method utilizes the 

relationship between received pilot symbols to 

reduce the impact of unknown channel responses, 

mitigating the effects of time-varying channel 

conditions. On the other hand, the frequential 

correlation method enhances accuracy by taking 

advantage of the symmetry of pilot subcarriers 

around the DC carrier, effectively eliminating 
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bias introduced by frequency-selective fading. 

The combination of these two techniques 

strengthens the robustness of the SFO estimation, 

making it more resistant to challenging channel 

conditions. 

Harish, Chuppala, Rajasekar Mohan, and 

R. Shashank [9] proposed a technique for 

estimating and correcting Sampling Frequency 

Offset (SFO) in OFDM receivers, building on the 

assumed proportional link between SFO and 

Carrier Frequency Offset (CFO). Their method is 

based on the premise that both the receiver's 

sampling clock and its carrier frequency oscillator 

share the same reference source, establishing a 

mathematical correlation between CFO and SFO. 

The process begins by estimating the CFO using 

training sequences within the received OFDM 

frame, applying autocorrelation methods. Once 

the CFO is determined, the SFO is derived using 

the equation δfc/fc = δfs/fs, enabling systematic 

correction of errors caused by SFO. The 

correction is performed in the frequency domain 

by applying a phase compensation factor to the 

FFT output, improving synchronization without 

the need for complex hardware clock recovery 

systems. While computationally efficient, this 

approach assumes that both oscillators are 

derived from the same reference, which might not 

hold true in practical scenarios. Hsiao et al. [10] 

introduced a clock synchronization approach for 

OFDM-based communication systems, focusing 

on estimating and correcting SFO within the 

frequency domain. Their technique involves 

observing phase rotation across OFDM 

subcarriers to estimate the SFO, offering a 

computationally efficient method for 

synchronization. However, the study does not 

include a direct comparison with other existing 

SFO estimation methods, making it difficult to 

assess the relative performance of this approach. 

Moreover, the method might be sensitive to 

varying channel conditions, which could affect its 

robustness in real-world implementations. 

Another drawback is the assumption of a free-

running analog-to-digital converter (ADC), which 

might not be compatible with all hardware 

configurations, limiting its practical use in OFDM 

systems. Liu et al. [11] performed an in-depth 

examination of various synchronization 

algorithms for OFDM systems, specifically 

targeting symbol timing synchronization, carrier 

frequency synchronization, and sampling clock 

synchronization. Their study reviews a range of 

methods, such as the Schmidl & Cox (SCA) 

algorithm, the Minn algorithm, pilot-based carrier 

frequency synchronization, and the Maximum 

Likelihood algorithm, to evaluate how effectively 

they address timing and frequency offset 

correction. Additionally, the paper proposes 

mitigating SFO using interpolation filters, which 

adjust the sampling moments at the receiver post-

detection, helping to reduce synchronization 

errors caused by SFO. Kumar [12] investigated 

frequency synchronization in frequency-domain 

OFDM- Index Modulation (IM)-based Wireless 

Local Area Network (WLAN) systems, 

suggesting an autocorrelation matrix-based 

technique to estimate frequency offsets. This 

approach monitors phase distortions, allowing for 

more accurate synchronization by compensating 

for SFO as timing drift accumulates across 

multiple symbols. By exploiting autocorrelation 

properties, this method improves synchronization 

accuracy, potentially boosting overall system 

performance in WLAN environments. 

The authors in [13] proposed a 

synchronization system for MIMO-OFDM based 

on Extreme Learning Machines (ELM), 

structured in two stages. In the first stage, an 

ELM network was used to estimate the residual 

symbol timing offset (RSTO) by processing 

preamble signals that were intentionally corrupted 

with known timing offsets during training. This 

was preceded by a preliminary coarse timing 

synchronization using traditional autocorrelation 

methods. In the second stage, another ELM 

network estimated the residual carrier frequency 

offset (RCFO) by analyzing phase distortions in 

the received preamble signals, which had also 

been trained with synthetic frequency offsets. 

Both ELM modules used the known preamble 

structure as a reference, processing the received 

signals after the initial coarse synchronization. 

The system generated its training data by 

deliberately introducing controlled timing and 

frequency offsets to the standard preamble 

signals, eliminating the need for actual channel 

conditions during the training phase. In [14], the 
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authors introduced machine learning based 

techniques to mitigate channel impairments in 

OFDM and Non-Orthogonal Multiple Access 

(NOMA)-OFDM systems, addressing issues like 

channel distortion, carrier frequency offset, 

sampling frequency offset, nonlinear distortion 

(NLD), and frequency-selective fading. The study 

employed neural networks (NNs), recurrent NNs 

(RNNs), and long short-term memory (LSTM) 

models for tasks like channel estimation, 

equalization, and joint CFO-SFO estimation and 

compensation. Moreover, ML techniques were 

proposed to tackle NLD caused by power 

amplifier nonlinearities. For NOMA-OFDM 

systems, the approach replaced traditional 

Successive Interference Cancellation (SIC)-

assisted detection with an ML-driven receiver. 

These techniques were evaluated through 

simulations across a range of channel conditions. 

Table 1 summarizes the previous work on SFO 

removal.

Table 1 : Survey Summary 

Authors Synchronization Problem Proposed Technique Drawbacks / Notes 

V. Fischer and 

A. Kurpiers [5] 

Frequency 

Synchronization 

The process consists of two distinct 

stages: first, frequency acquisition is 

achieved using FFT-based power 

spectral density estimation, and 

second, frequency tracking is 

performed through phase increment 

measurement. To account for sample 

rate offsets, frequency deviation 

analysis is employed for precise 

adjustments. 

Requires averaging 

multiple symbols to 

counteract noise-induced 

errors. 

W.-J. Shin, J. 

Seo, and Y.-H. 

You [6] 

Sampling Frequency offset  Two algorithmic approaches: (A) 

Phase differences between adjacent 

FRCs leveraging temporal correlation, 

(B) Differential relations among FRC 

indices for precision. Introduces a low-

complexity estimation method. 

- 

E.-S. Shim, et al. 

[7] 

Timing Offset (TO), CFO, 

and SFO 

Two-stage approach: Pre-FFT 

synchronization using CP correlation 

and phase differences; Post-FFT 

synchronization involving integer 

frequency offset estimation and 

reference cell-based tracking. 

- 

Y.-A. Jung and 

Y.-H. You [8] 

Sampling Frequency offset Uses temporal correlation between 

received pilot symbols and frequency 

correlation among pilot subcarriers to 

mitigate bias from frequency-selective 

fading. 

- 

H. Chuppala, R. 

Mohan, and R. 

Shashank [9] 

Sampling Frequency offset Estimates CFO via autocorrelation, 

then computes SFO through 

proportionality equations. Corrects 

SFO-induced errors in the frequency 

domain with FFT-based phase 

compensation. 

Assumes a shared 

reference source for 

carrier and sampling 

oscillators, which may 

not always hold. 

C.-Y. Hsiao, et 

al. [10] 

Sampling clock offset Uses phase rotation across OFDM 

subcarriers in the frequency domain for 

SFO estimation. 

No performance 

comparison with other 

methods; potential 

sensitivity to channel 

conditions; assumes a 

free-running ADC. 

M. Liu, et al. Symbol timing, CFO, and Compares different synchronization - 
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[11] Sampling clock 

synchronization 

algorithms (Schmidl & Cox, Minn, 

Pilot-based, Maximum Likelihood). 

Suggests SFO correction via 

interpolation filters. 

N. Kumar [12] Frequency synchronization Autocorrelation matrix-based method 

for frequency offset estimation and 

SFO compensation. 

- 

Liu, Jun, et al. 

[13] 

Timing and Frequency 

Synchronization in 

MIMO-OFDM 

Employs a dual- ELM framework, 

where one ELM refines timing 

estimates and another corrects 

frequency offsets using preamble 

signals with synthetic impairments. 

- 

Singh, 

Abhiranjan, and 

Seemanti Saha 

[14] 

Channel Distortions, 

Synchronization Errors, 

NLD, Multi-User 

Interference 

Machine Learning (NNs, RNNs, 

LSTMs) used to address channel 

distortion, CFO/SFO, and nonlinearity 

in OFDM/NOMA-OFDM systems. 

- 

 

III. PROPOSED METHOD     
This section on the proposed method is 

structured into two parts. Subsection A presents 

the impact of the SFO on system performance, 

while subsection B presents both the proposed 

and conventional methods used to counteract this 

effect. 

A. Analyzing the Influence of SFO on 

OFDM System 

Define S[k] as the frequency-domain 

symbols, which correspond to the modulated data 

on the subcarriers, with k ranging from 0 to N−1, 

where N denotes the total number of subcarriers. 

The corresponding time-domain signal, s[n], is 

given by: 
 

 , -  
 

 
∑  , -        
   

   

   

              

(1) 

The signal, r[n], at the receiver is influenced by 

the sampling frequency offset. When there is a 

discrepancy between the receiver's sampling 

frequency, fs', and the transmitter's sampling 

frequency, fs, represented by the difference Δfs = 

fs' - fs, the time-domain expression of the 

received signal can be described as follows: 

 
 

 , -   (  
  

   
)           , - 

(2) 

 

The normalized sampling frequency offset is 

denoted by ε = Δfs/fs, while  [n] stands for the 

additive noise. In the receiver's frequency 

domain, the symbols in the frequency domain are 

retrieved as follows: 
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Replacing r[n] in the time-domain expression: 
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An alternative way to write this would be: 
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(5) 

 
 [k] represents the frequency-domain 

representation of the noise, obtained by applying 

the FFT to  [n]. 

 

The SFO appears in the frequency 

spectrum through two primary effects. The first is 

subcarrier leakage, or inter-carrier interference, 

which breaks the orthogonality between the 

subcarriers. This phenomenon can be represented 

mathematically as: 
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In this context, H[k] denotes the frequency 

response of the channel, while the sinc function 

accounts for the interference caused by adjacent 

subcarriers. Second, SFO induces a phase shift 

that increases linearly as the subcarrier index k 

progresses: 

 

 
 , -       

 

 
 

(7) 

 

Accurate phase rotation compensation is essential 

for proper demodulation of the received signal. 

The presence of phase rotation and frequency 

offset degrades system performance, emphasizing 

the critical role of precise SFO estimation and 

correction in OFDM systems. The next figure 

demonstrates the impact of SFO on the 

performance of a 16QAM-OFDM system through 

simulation. 

 

 

 
Fig. 1: Effect of SFO on the BER in a 16QAM-OFDM Communication System 

 

 

 

As expected, Figure 1—generated in 

MATLAB—shows the characteristic BER 

performance of a 16QAM-OFDM system with 32 

subcarriers and 150 OFDM symbols under 

varying sampling frequency offsets. The figure 

illustrates that increasing SFO introduces 

performance degradation, reflected in rising BER 

values even at high Eb/No levels. Larger offsets 

yield progressively flatter BER curves, deviating 

from the ideal SFO = 0 ppm case and reaffirming 

the well-known sensitivity of OFDM systems to 

frequency mismatches. 

B. Methods for Counteracting SFO Effects: 

Conventional-Hybrid vs. Proposed 

Approach 

This subsection is structured into five parts. 

The first four introduce benchmark methods for 

SFO estimation, while the fifth presents the 

proposed approach. A summary of all methods is 

provided as follows: 

B.1. Phase Difference (PD) Method 

This technique, based on the SFO 

estimation method outlined in [5], calculates the 

SFO by examining phase shifts across subcarriers 
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in the received signal's frequency domain. Given 

that SFO causes phase rotations that vary with 

subcarrier indices, a reference subcarrier is 

chosen, and the phase differences relative to it are 

measured to determine the frequency offset. The 

phase difference between subcarrier m and the 

reference subcarrier     is given by: 
      , -    ,   - (8) 

The phase of the received symbol at subcarrier m 

is denoted as  R[m]. 
The SFO value is subsequently calculated as: 
 

  ̂  
 

   
∑

  
     

 

   
     

 

(9) 

where   is the number of subcarriers. To enhance 
the accuracy of the estimation, a weighting 

scheme is applied to modify this process. 

B.2. Correlation-Based (CB) Method 

The correlation-based technique, which is 

based on the SFO estimation method outlined in 

[7], calculates SFO by utilizing the phase 

connection between consecutive subcarriers in the 

received OFDM signal. As the phase distortion 

induced by SFO builds up progressively across the 

subcarriers, a detectable phase correlation emerges 

between neighboring subcarriers. This phase 

correlation between adjacent subcarriers is 

expressed as follows: 
     ( , - 

 ,   -) (10) 

 

The term   ,   -represents the complex 

conjugate of  ,   -, while    denotes the 

phase difference between neighboring subcarriers. 

When averaged across all subcarriers, the result is: 
 

  ̂  
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(11) 

Where   ̂is the estimated SFO. 

B.3. Phase Difference Weighted by 

Subcarrier Index (PD-WSI) method               

This technique, based on the SFO 

estimation methods outlined in [9,15,16], 

calculates the SFO by examining the phase shift 

between consecutive OFDM symbols. Unlike 

traditional methods that rely solely on the phase 

difference, this approach incorporates a weighting 

scheme tied to the subcarrier index. The rationale 

behind this weighting is that subcarriers with 

higher indices undergo a greater phase rotation 

caused by SFO, enhancing the accuracy of the 

estimate. The estimation process is outlined 

below:  
 

   , -   (
  ,   -

  , -
) 

   ∑   
 

   
∑    , -

   

   

 
 
  

   
 
 

 

 

  ̂        

 

(12) 

Where   , - is the received OFDM symbol at 

subcarrier l and symbol m in the frequency domain 

(assuming symbols equal subcarriers in count). 

The term    , - indicates the phase difference 

between consecutive symbols at subcarrier l, while 

   is the weighted total of these phase differences. 

   refers to the scaling factor, and   ̂ denotes the 

estimated SFO. 

 

B.4. Hybrid Estimation (H-EST) 

Method                    

The Hybrid SFO Estimation approach is 

designed to accurately estimate the Sampling 

Frequency Offset in OFDM systems by 

leveraging both time-domain and frequency-

domain correlations across all subcarriers. This 

method builds directly from the estimation 

approach introduced in [9]. The resulting 

estimation for the SFO is expressed as follows: 
 

   ∑ ∑ ( (
  ,   -

  , -
)

   

   

 
 
  

   
 
 

     (
  ,   -

  , -
)) 

  ̂          
 

(13) 

The index    identifies the frequency bin 

associated with subcarrier l (assuming symbols 

equal subcarriers in count), while  4 captures the 

phase shift resulting from both time and frequency 

correlation. The term  4 serves as a scaling 

parameter, and   ̂ represents the estimated SFO. 

B.5. Proposed Classifier-Based SFO 

Estimators  

In our proposed method, we chose a 

classifier-based framework to estimate the 

sampling frequency offset. This approach stands 

apart from traditional techniques that typically use 
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closed-form solutions or iterative processes, as it 

utilizes optimized feature mappings to better 

capture nonlinear patterns, ultimately improving 

estimation accuracy and robustness. To further 

increase the precision and reliability, we 

incorporated several classifiers, a common practice 

in machine learning to identify the most suitable 

solution. Additionally, we focused on achieving 

the best performance while minimizing 

computational complexity. As such, we avoided 

resource-heavy models like Convolutional Neural 

Networks (CNNs). This led us to introduce three 

distinct SFO estimators, each named according to 

the classifier used: Kernel Support Vector 

Machine (KSVM)-based, LDA-based, and ANN-

based SFO estimators.  

This subsection is organized into three parts: 

subsection B.5.1. introduces the classifiers used in 

the proposed SFO estimators, subsection B.5.2. 

describes the dimensionality reduction technique 

applied, and subsection B.5.3. presents the training 

set used for the classifier-based estimators. 

 

B.5.1. Classifiers-used in the SFO 

estimators 
 

The classifiers are described in detail as 

follows: 

 

B.5.1.1. Linear discriminant 

analysis 

LDA classification involves building a 

discriminant analysis model that predicts 

outcomes by considering factors like posterior 

probability, prior probability, and associated 

costs. The primary objective is to assign 

observations to the correct class while reducing 

the overall classification cost. This optimization 

process can be accomplished by [17,23,24]: 
 

 ̂                  ∑  ̂

 

   

( | ) ( | ) 
(14) 

In this context, K represents the total number of 

classes, while  ̂  denotes the predicted 

classification. The term  ( | ) signifies the cost 
associated with assigning an observation to class 

y when its actual classification is k. Meanwhile, 
 ̂( | ) refers to the posterior probability that an 
observation belongs to class k. 

Our approach employs LDA to estimate 

the SFO. The estimation framework relies on LDA 

to classify specific features—detailed at subsection 

B.5.3.—into predefined classes, each 

corresponding to a distinct SFO value. A crucial 

aspect of this process is dimensionality reduction, 

which helps minimize computational complexity 

while preserving essential SFO characteristics for 

optimal training and classification. Additionally, 

feature selection ensures that the retained features 

effectively capture the SFO behavior in the signal. 

Notably, the dimensionality reduction and feature 

selection techniques applied remain consistent 

across all ML-based estimators, ensuring 

uniformity in feature representation and facilitating 

fair performance comparisons. To maintain 

numerical stability and ensure accurate LDA 

classification, we apply the pseudo-inverse of the 

covariance matrix, effectively mitigating issues 

arising from ill-conditioned matrices. The model 

undergoes training across multiple frames, 

allowing it to adapt dynamically to fluctuating 

channel conditions for improved robustness. Once 

classification is complete, the resulting outputs are 

mapped back to their respective SFO values using 

a predefined lookup table, thus completing the 

estimation process. 

B.5.1.2. Kernel support vector 

machine 

A kernel support vector machine extends 

the capabilities of a linear SVM by applying 

kernel functions, which transform non-linear data 

into a higher-dimensional space where it becomes 

linearly separable. This transformation enables 

the algorithm to construct an optimal hyperplane 

that maximizes the margin between classes, even 

in cases where the data exhibits complex, non-

linear patterns. The decision function of an SVM 

is formulated as [18,23,24]: 
 

 ( )      (∑     (    )   

 

   

) 

(15) 

In this context,    denotes the class labels 
associated with the support vectors    while,     
represents the Lagrange multipliers. The term b 

corresponds to the bias, and the function  (    ) 
serves as the kernel function. Specifically, our 

method employs the Radial Basis Function (RBF) 

kernel, which is expressed as [21]: 
  (    )     (  ‖    ‖

 ) (16) 

In this context, γ is a positive kernel parameter 
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that determines how much impact a single 

training instance has on the model. A higher γ 

results in decision boundaries that are tightly 

shaped around individual data points, leading to 

more precise but potentially overfitted 

classifications. Conversely, lower γ values 

produce broader, more generalized decision 

regions. The RBF kernel enhances SVMs by 

mapping data into a higher-dimensional space, 

enabling them to capture complex, non-linear 

patterns and achieve linear separability in that 

transformed space. 

Here, we apply the KSVM to predict the 

SFO. To capture the complex relationships 

between features and their classes, we use the 

RBF kernel, which creates nonlinear decision 

boundaries. The KSVM categorizes the selected 

features, outlined at subsection B.5.3., into classes 

that each represent a specific SFO range, which is 

mapped in a table. The model is trained across 

multiple frames to adapt to varying channel 

conditions, ensuring reliable performance. After 

classification, the results are mapped to the 

corresponding SFO values using a predefined 

table, completing the estimation process. 

B.5.1.3. Artificial neural network 
The Multilayer Perceptron (MLP) is 

employed to predict SFO based on the received 

signals. It consists of an input layer, one or more 

hidden layers, and an output layer, with the goal 

of classifying the signals using the 

Backpropagation method. During forward 

propagation, the input is passed through the 

network, generating the output. In backward 

propagation, the error is computed and the 

network's weights are adjusted to minimize the 

error. Key elements like activation functions and 

weights are essential for mapping the input to the 

output. The training of the network involves 

iterating through forward and backward 

propagation cycles to fine-tune the weights and 

reduce the prediction error. 

The output of the jth neuron in the (k+1) 

layer is determined by a weighted sum of the 

outputs from the neurons in the kth layer, followed 

by an activation function. The activation function, 

denoted as R, processes the sum of the weighted 

inputs. The parameters involved include Mk , 

which represents the number of neurons in the kth 

layer, 𝑊  
( + )

, the weight connection between the 

ith neuron in the kth layer and the jth neuron in the 

(k+1) layer, and   
  , the output of the ith neuron in 

the kth layer. This relationship is expressed as 

[19,23,24]: 
 

  
( + )

  (∑𝑊  
( + )  

 

  

   

) 

(17) 

The error function is described by [17]: 
 

  
 

 
∑(  

    
 ) 

  

   

 

(18) 

In the kth layer, the desired output of the jth 

neuron is given by   
 , while its actual output is 

  
 . During the training phase, the Bayesian 

regularization back-propagation algorithm is 

applied, specifically leveraging the Levenberg-

Marquardt optimization method [20] to update the 

weights and biases. The goal of this process is to 

fine-tune the weights and minimize the error 

between predicted and actual outputs. The 

Levenberg-Marquardt optimization is a popular 

method in numerical optimization, as it combines 

the advantages of both the Gauss-Newton and 

gradient descent methods, thus proving effective in 

minimizing nonlinear objective functions. 

Our approach uses an MLP neural network 

to predict the SFO. The network is designed with 

multiple hidden layers to model the complex 

relationships between signal features, which 

include the received signal characteristics 

subjected to the effect of both SFO impairment 

and the channel, and the corresponding SFO 

values. During training, the model adjusts its 

weights iteratively through optimization to map 

inputs to accurate SFO predictions. Training 

continues over several epochs, enabling the model 

to learn the data's underlying patterns. Once 

trained, the MLP predicts the SFO, completing the 

estimation process. 

B.5.2. Dimensionality Reduction 

Techniques 
We utilized two matrix dimensionality reduction 

techniques: principal component analysis and 

singular value decomposition. The techniques are 

illustrated as follows: 

B.5.2.1. Principal component 

analysis 

      PCA is a mathematical technique used to 
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reduce the dimensionality of a high-dimensional 

dataset by projecting it onto a lower-dimensional 

subspace. This is achieved by determining a new 

set of orthogonal basis vectors, known as principal 

components, which capture the directions of 

maximum variance in the data. The transformation 

preserves the most critical structural information 

while eliminating less important dimensions [21]. 

 

  

The steps we followed to apply PCA are outlined 

as follows: 

Step 1: Centering the input 

PCA requires the input to be 

zero-mean. This step subtracts 

the mean of each row (row-wise) 

from the input. 
  ̃       (19) 

Where X is the original input, μ is 

the mean along each row, and  ̃ 
is the centered X. 

Step 2: Compute Covariance 

Matrix  

The covariance matrix is 

computed as: 

    ̃ ̃  (20) 

Where  ̃  is the conjugate 

transpose (Hermitian) of  ̃, and 
  is the covariance matrix. 
Step 3: Eigen Decomposition  

Eigen decomposition extracts the 

principal components 

(eigenvectors) corresponding to 

the largest eigenvalues as: 

       (21) 

Where V contains the 

eigenvectors (principal 

components), and    is a 

diagonal matrix of eigenvalues. 

Step 4: Project input onto 

Principal Components 

Transforms the original input 

matrix into the lower-

dimensional space defined by the 

principal components. 

       (22) 

Where    is the conjugate 

transpose of the eigenvectors, 

and Z is the reduced output 

matrix. 

Note the input matrix here is the 

frequency domain signal after 

being affected by certain SFO 

and the channel effect. 

B.5.2.2. Singular value decomposition 

        SVD is a matrix factorization method that 

decomposes a matrix  ∈ ℝ 𝑥𝑑  into three 

components [22]: 
        (23) 

Where  ∈ ℝ 𝑥   is the orthogonal matrix (left 
singular vectors),  ∈ ℝ 𝑥𝑑 is the rectangular 
diagonal matrix of singular values 𝜎 ≥ 𝜎 ≥ ⋯ ≥
 , and  ∈ ℝ𝑑𝑥𝑑  is the orthogonal matrix (right 
singular vectors). The singular values 𝜎  are the 
square roots of the eigenvalues of     or    . 

To approximate X with rank k, we use: 
          

  (24) 

Where   ∈ ℝ
 𝑥     ∈ ℝ

 𝑥  𝑎     ∈ ℝ
𝑑𝑥 . 

The process we used is defined in the following 

steps: 

Step 1: Center the input 

Subtract the mean from each 

feature (row-wise) to center the 

input around zero. Essential for 

both PCA and SVD to focus on 

variance rather than bias. 
  ̃     , - (25) 

Where X is the original input 

matrix, and  , - is the mean 
along rows. 

Step 2: Compute SVD 

Factorizes the centered matrix 

into singular vectors and values, 

then computes a reduced SVD. 

  ̃       (26) 

Where U is the left singular 

vectors, S is the diagonal matrix 

of singular values, and V is the 

right singular vectors. 

 

 

 

Step 3: Truncate to “target 

dimensions” Components 

Retains only the top k singular 

vectors/values (most significant 
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directions) and discards smaller 

singular values. 

     ,     -        ,       - (27) 

Where k is the target dimensions. 

Step 4: Project input onto 

Reduced Basis 

Projects the original (uncentered) 

input onto the top k singular 

vectors. 

     
   (28) 

Where Z is the reduced matrix, 

and   
  is the conjugate 

transpose of the top k singular 

vectors. 

B.5.3. Construction of the Training Set 

for Machine Learning-based SFO Estimators 

        To enable data-driven estimation of the SFO, 

we construct a training set that captures the 

relationship between received OFDM 

signals (affected by SFO and channel then 

reduced) and their true SFO values. Below, we 

formalize the mathematical representation of 

the inputs (features) and targets (labels) used for 

training the proposed ML-based estimators. 

 Input Features 

For each sample i, the input is 

constructed as: 
 

   *  (  )   (  )  
|  |

   (|  |)
 
 (  )

 
+ 

(29) 

Where     is the input feature 
vector, and    is the 

dimensionality-reduced 

output matrix. 

 

 

 

 

 Targets (True SFO 

Values) 

The targets are the true SFO 

values (in ppm) for each 

sample: 

   *  +   
        

 (30) 

where    is repeated for each 
channel realization. The input 

feature set and corresponding 

target values are used to train 

the models, enabling them to 

predict   for new inputs, with 

a table mapping classes to 

their respective SFO values 

in KSVM and LDA.  

 Our approach to feature-target training 

is highly efficient because it reduces 

computational complexity while preserving the 

key characteristics essential for accurately 

estimating the SFO. By focusing on the most 

relevant features and minimizing unnecessary 

dimensionality, we maintain the critical 

information needed to model both amplitude and 

phase distortions. This enables us to achieve high 

estimation accuracy while ensuring the process 

remains computationally efficient. 

IV. RESULTS AND DISCUSSION 
The MATLAB-based implementation of 

the proposed estimation methods and simulation 

setup is discussed in this section, which is 

organized into two subsections. In subsection A, 

the methodology for evaluating various SFO 

estimation approaches is described. Subsection B 

provides a detailed comparison of the results 

obtained from each method under the same test 

conditions. 

 

A. Performance Assessment Framework 

All techniques were evaluated using Monte 

Carlo testing, supplemented by BER curve 

analysis for comparative assessment. The Monte 

Carlo testing procedure is outlined as follows: 

1. Configuration Phase 

 Total simulation trials: M = 

10,000 

 Error tracking variables are 

zero-initialized for each 

estimator: PD, CB, PD-WSI, 

H-EST, LDA-based, KSVM-

based, and ANN-based SFO 

estimators 
 ∑        

 

m ∈ *PD  CB  PD-WSI, H-EST, 
LDA b sed  KSVM b sed   nd 
ANN b sed SFO esti  to s+ 

 

(31) 

2. Trial Execution Loop 

For every trial i (1 ≤ i ≤ M): 

a) Parameter Sampling 
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 Randomly draw true SFO value 

ϵ⁽ ⁱ ⁾  from a uniform 

distribution across the 

operational range. 
  ( )    ( ) (32) 

b) Signal Processing 

 Apply the selected SFO to an 

OFDM distorted signal (by the 

channel) 

 Transform the signal to 

frequency domain 

representation 

 

3. Estimation Phase 

 Each algorithm m computes its 

SFO estimate ϵ ⁽m ⁱ ⁾  

 

4. Error Quantification 

a) Cumulative Error Tracking 

 For every estimator m: 

 ∑     

 ∑( ( )
 

   

   ̂
( )
)  

(33) 

 

b) Final Metric Computation 

 Post-simulation, root-mean-

square error is derived as: 

 
 

∑      √
 

 
∑( ( )    ̂

( )
) 

 

   

 

(34) 

 The percentage improvement 

(reduction) in RMSE is 

calculated as: 
     MSE

 [
   𝑎                    𝑑     𝑎             𝑑      𝑑

   𝑎                    𝑑
] 

     

(35) 

The configuration of all hyperparameters 

employed in the proposed method is outlined in 

Table 2. 

 
Table 2: The Hyperparameters Table 

Name  Hidden Layers and 

Activation Functions 

Features and Classes Back-propagation 

and training 

Additional 

Notes 

LDA-

based 

SFO 

estimator 

N/A  Features:  

The features and targets for training 

the estimator are: 

  

 *  (  )   (  )  
|  |

   (|  |)
 
 (  )

 
+ 

  *  +   
        

 

 

 Classes:  

 100 Class (SFO=0:100ppm). 

 

A lookup table is used to set the 

targets to a class sets, then this table is 

saved, and used when the model is 

applied. 

 Trained on 

1:25 frames 

(depending on 

the channel) 

Pseudo-

inverse for 

covariance 

matrix 

inversion. 

KSVM-

based 

SFO 

estimator 

N/A  Features:  

The features and targets for training 

the estimator are: 

  

 *  (  )   (  )  
|  |

   (|  |)
 
 (  )

 
+ 

  *  +   
        

 

 

 Classes:  

 100 Class (SFO=0:100ppm). 

 Trained on 

1:25 frames 

(depending on 

the channel) 

RBF 

kernel. 
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A lookup table is used to set the 

targets to a class sets, then this table is 

saved, and used when the model is 

applied. 

ANN-

based 

SFO 

estimator 

 3 Hidden 

Layers. 

Number of neurons in 

each layer    

[
 

    
]       ≥   

Where n is the number 

of subcarriers,   
represents the hidden 

layer index. 

(e.g., with three hidden 

layers and 32 

subcarriers, the neuron 

distribution is: 33, 17, 

and 9 neurons, 

respectively) 

Activation Functions= 

Hyperbolic Tangent 

Sigmoid (Hidden), 

Linear (Output) 

 Features:  

The features and targets for training 

the estimator are: 

  

 *  (  )   (  )  
|  |

   (|  |)
 
 (  )

 
+ 

  *  +   
        

 

 

 Classes:  

 100 Class (SFO=0:100ppm). 

 Levenberg-

Marquardt 

with Bayesian 

regularization 

 

 Trained on 

1:25 frames 

(depending on 

the channel). 

- 

B. Sampling frequency offset estimation result 

Figure 2 illustrates the Monte Carlo RMSE 

performance of the SFO estimation methods under 

different SNR conditions. It is evident that 

machine learning-based methods, particularly the 

LDA-based and ANN-based estimators, achieve 

significantly lower RMSE values compared to 

traditional approaches, demonstrating superior 

estimation accuracy and robustness to noise. 

Among all the methods, the LDA-based estimator 

consistently performs the best across all SNR 

levels. In contrast, traditional techniques like PD 

and CB exhibit the highest RMSE, indicating poor 

performance, especially in low SNR scenarios. 

Hybrid methods such as PD-WSI and H-EST 

show moderate performance, offering a 

compromise between complexity and accuracy. 

Overall, the results highlight the effectiveness of 

ML-based approaches in SFO estimation, 

especially under challenging noise conditions. 

Figure 3,4, and 5 show the Bit Error Rate 

performance of the SFO methods as a function of 

Eb/No (energy per bit to noise power spectral 

density ratio). Among all the methods evaluated, 

the ANN-based, LDA-based, and KSVM-based 

SFO estimators demonstrate performance that 

closely matches the Ideal case, indicating excellent 

estimation and compensation capability with 

minimal BER degradation. In contrast, traditional 

methods like PD and CB show significantly higher 

BER, suggesting less effective handling of SFO. 

The PD-WSI and H-EST methods perform 

moderately better than PD and CB but still fall 

short of the machine learning-based estimators. 

Overall, the three plot clearly highlights that ML-

based approaches substantially improve BER 

performance, making them more reliable for 

robust communication. 
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Fig. 2: Comparative Analysis of Monte Carlo RMSE Under AWGN Conditions 

 

 

 
Fig.3: Comparison of SFO method error rates around a 5 dB signal-to-noise ratio 
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Fig. 4: Zoomed perspective on BER behavior of SFO approaches around 5 dB signal-to-noise ratio 

 

 

 
Fig.5: Assessment of Bit Error Rates Across Different Eb/No Levels for SFO Techniques 
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Fig. 6: Performance Enhancement of Machine Learning Models Over Baselines in Fading Channel 1 

 

 
Fig.7: Performance Enhancement of Machine Learning Models Over Baselines in Fading Channel 2 
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Table 3: Simulation Parameters for Flat and Frequency-Selective Rayleigh Fading Channels 

Parameters (Normalized 

System) 

 

Frequency-Selective 

Rayleigh Fading Channel 1 

Frequency-Selective Rayleigh Fading Channel 2 

Doppler Shift (× Rs) Hz 

 

1 3 

Number of Multipath 

Components 

 

5 8 

Path Delays (sec) 

 

[0,0.3Ts,0.7Ts,1.5Ts,2Ts] [0,0.2Ts,0.5Ts,0.9Ts,1.3Ts,1.8Ts,2.5Ts,3Ts] 

Average path gains (dB) 

 

[0,−3,−6,−9,−12] [0,−4,−8,−12,−16,−20,−25,−30] 

Figures 6 and 7 illustrate the percentage 

improvement in SFO estimation under Fading 

Channels 1 and 2, respectively, as outlined in 

Table 3, using the methods evaluated across SNR 

levels of 20 dB, 15 dB, 10 dB, and 5 dB. Both 

LDA-based and ANN-based estimators achieve 

high accuracy, consistently delivering over 88% 

improvement across all baselines (PD, CB, PD-

WSI, and H-EST). The LDA-based SFO estimator 

shows slightly better performance than the ANN at 

higher SNRs, particularly under clean channel 

conditions. KSVM-based SFO estimator, although 

effective at higher SNRs, show a marked decline 

in improvement under fading conditions, dropping 

to around 50% against the PD baseline at 5 dB, 

indicating sensitivity to channel degradation. 

Overall, while LDA may offer a slight edge in 

optimal conditions, ANN stands out for its 

consistent reliability across a range of SNRs, 

outperforming conventional and hybrid techniques 

in challenging fading channels. Both SVD and 

PCA are effective dimensionality reduction 

techniques that preserve the essential variation 

needed for accurate SFO estimation, while 

significantly reducing processing time and 

computational cost. PCA demonstrated superior 

average performance, showing an improvement of 

approximately 37.91%, whereas SVD achieved the 

lowest average processing time, reducing it by 

about 96.14%. PCA is particularly effective at 

retaining critical variance for higher estimation 

accuracy, while SVD provides substantial 

computational savings, especially in complex 

fading environments. However, under favorable 

channel conditions, both methods perform 

similarly in terms of performance, making SVD a 

suitable option when the channel is stable and less 

noisy. Figure 8 reports the inference latency of 

various SFO estimators, averaged over 10,000 runs 

on a system with an AMD Ryzen 5 5600G (3.90 

GHz) and 16GB RAM, excluding training time. 

The PD, CB, PD-WSI, H-EST, and KSVM-based 

methods demonstrate low execution times, 

whereas the LDA- and ANN-based estimators are 

notably slower, with the ANN-based method 

exhibiting the highest latency. From figure 8 we 

 
Fig. 8: Average execution times when the training is executed offline 
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can understand that, Although KSVM does not 

match the high estimation accuracy of ANN and 

LDA, it delivers more reliable performance than 

both hybrid and conventional methods in 

challenging environments with significantly lower 

computational time than ANN and LDA. In real-

world applications, selecting an appropriate 

estimator involves navigating trade-offs between 

accuracy, computational overhead, and processing 

speed. The optimal choice depends heavily on the 

specific use case—systems that require precise 

estimation may tolerate higher computational 

demands, whereas environments with limited 

processing power or energy availability favor 

lightweight, efficient solutions. Ultimately, the 

estimator must be chosen in accordance with the 

system’s operational constraints and performance 

goals. 

V. CONCLUSION 

This study comprehensively evaluated 

various sampling Frequency Offset estimation 

methods under diverse SNR conditions and 

channel environments. The results consistently 

demonstrate the superiority of machine learning-

based approaches—particularly LDA-based and 

ANN-based estimators—over traditional and 

hybrid techniques. These ML methods achieved 

significantly lower RMSE and BER values, 

indicating enhanced estimation accuracy and 

robustness to noise and fading effects. Among 

them, the LDA-based estimator delivered the best 

overall performance, especially at higher SNRs, 

while the ANN-based approach showed 

remarkable consistency across all tested 

conditions. The KSVM estimator also showed 

promising results at higher SNRs but was more 

sensitive to degradation under fading channels. In 

contrast, traditional methods such as PD and CB 

were significantly less effective, especially in low-

SNR and fading environments. Hybrid methods 

like PD-WSI and H-EST offered a balanced 

performance but did not match the reliability and 

accuracy of ML-based solutions. Dimensionality 

reduction techniques, namely PCA and SVD, 

played a crucial role in enhancing the 

computational efficiency of the ML models. While 

PCA stands out for its enhanced estimation 

accuracy—delivering an average improvement of 

around 37.91%—SVD takes the lead in efficiency, 

cutting average processing time by roughly 

96.14%. Nevertheless, when channel conditions 

are stable and relatively free of noise, the 

performance gap between the two narrows 

considerably, allowing for flexible method 

selection based on system priorities rather than 

performance differences. In conclusion, ML-based 

SFO estimators, supported by effective 

dimensionality reduction techniques, provide a 

powerful solution for robust and accurate 

synchronization in modern communication 

systems. The choice of estimator should ultimately 

align with the specific system requirements, 

balancing accuracy, latency, and computational 

resource availability. 
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