https://bjas.journals.ekb.eg/ Applied and Basic Science

Palaeoenvironments and palaeobiogeographical distribution of the Eocene larger benthic foraminifera and macrofaunal associations in northern Bahariya Depression, Western Desert, Egypt

Nada A. Ayoub¹, Sayed M. Ahmed¹, Rifaat A. Osman¹, Mervat S. Hassan² and Emad S. Sallam²

Department of Geology, Faculty of Science, Benha University, Egypt

Central Metallurgical Research and Development Institute, Cairo, Egypt

E-mail: nadaabdelfattah932@gmail.com

Abstract

The Eocene rocks exposed in northern Bahariya Depression constitute from base to top, the Naqb, Qazzun and El-Hamra formations, which made up of highly fossiliferous siliciclastic—carbonate rocks deposited essentially in marginal-marine, neritic, tide-dominated environments. These environments correspond, respectively, to peritidal flat, lagoonal—restricted bays, barrier shoal and platform margin reefal zones situated on a gently sloping homoclinal inner to very proximal mid-ramp settings. Four local larger benthic foraminiferal zones were identified. The proposed zones correspond to the regional larger benthic foraminiferal zones (SBZ12 through SBZ19) of the Tethyan shallow carbonate platforms. These zones allowed assigning a late Ypresian age to the Naqb Formation, an early Lutetian to the Qazzun Formation, and a middle Lutetian—Priabonian to the El-Hamra Formation. Furthermore, five distinctive macrofaunal assemblages were identified and palaeoecologically interpreted. Paleobiogeographically, the identified benthic foraminifera and macrofaunal assemblages show a dominantly Tethyan character and strong affinity to the African, Arabian, Indian and southern Europe marginal-marine carbonate platforms. This study, therefore, contributes to the understanding of the facies architecture and palaeobiogeography of the Eocene carbonate platforms developed along the margins of the circum-Mediterranean domain.

Keywords: Palaeoenvironments, Palaeobiogeography, Eocene, Bahariya Depression

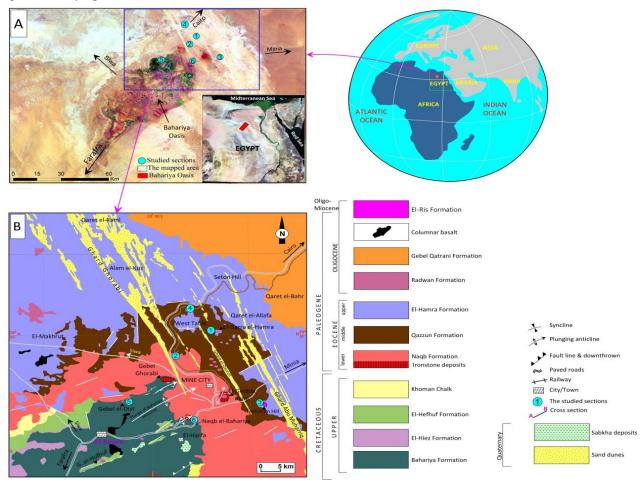
1. Introduction

The Eocene shallow carbonate platforms in northern Egypt are dominated by benthic foraminifera and macrofossils mainly of oysters, gastropods, nautiloids, echinoids, bryozoans and algal debris. Larger benthic foraminifera (LBFs), particularly, are helpful skeletal constituents in biostratigraphy, depositional facies and palaeoenvironmental analyses of the Eocene sequences, and they occur abundantly in the shelf regions of tropical and subtropical marginalmarine, coastal lagoons, warm water oligotrophic reefs and carbonate environments [1, 2, 3, 4, 5]. Deposition of the Eocene sediments in Egypt was particularly controlled by regional and eustatic sea-level fluctuations of the Neo-Tethys, as well as tectonic instability and climatic changes, which invoked both irregular marine transgressions and regressions [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Consequently, large varieties of sedimentary litho- and biofacies were formed in response to these erratic conditions. In the northern plateau of the Bahariya Depression (the area under investigation), located in the north-central part of the Egyptian Western Desert, the Eocene rocks consist of thick-bedded sediments that display shelfal shallowmarine facies characteristics. Therefore, this study aims at providing significant clues on the palaeoecology and regional palaeobiogeographic distribution of some larger benthic foraminifera and

macrofauna identified from the Eocene rocks cropping out in northern Bahariya Depression.

print: ISSN 2356-9751

online: ISSN 2356-976x


2. Geological setting

The Bahariya Depression is a NE-oriented, erosion-related landform, located in the north-central part of the Western Desert of Egypt (Fig. 1). It coordinates between latitudes 27° 48′ and 28° 30′ N and longitudes 28° 35′ and 29° 10′ E, approximately 370 km southwest of Cairo. The Bahariya Depression is roughly oval covering an area of approximately 1800 km². It is flanked from all sides by relatively high scarps rising ~250 m above sea level. The Bahariya Depression was deeply excavated most probably during the Neogene by the interplay of tectonics, karstification and deflation, which resulted in the continuous lowering of the depression floor to ~110 m above sea level [17].

The Bahariya Depression superimposes the Bahariya anticline extending from Gebel Ghorabi in the northwest, passing through the central hills in the depression floor to the southern closure of the depression. The origin of the Bahariya anticlinal fold is attributed to the Syrian Arc System (SAS) initiated most probably in the Late Cretaceous and continued intermittently until the late Paleogene. The Bahariya Depression consists mainly of sedimentary successions ranging in age from the Late Cretaceous to the Paleogene. A geological map showing the stratigraphy of the different rock units exposed in the northern

sector of the Bahariya Depression is given (Fig. 1). The Quaternary sediments in the Bahariya region are represented by sporadic and isolated occurrences of

endorheic playas (dry paleo-lakes), brackish sabkhas, and aeolian nebkhas (coppice-shrub) and sand dunes [18, 19, 20].

Fig. 1. A) ETM⁺ Landsat image of the Bahariya Depression showing the locations of the studied sections. **B)** Geological map showing the distribution of the different rock stratigraphic units exposed in the northern Bahariya region [6, 7].

3. Material and methods

A combination of field and petrographic investigations was utilized to enhance stratigraphical and sedimentological interpretations. Larger benthic foraminifera (mainly Nummulites) and macrofauna including oysters, gastropods, nautiloids and echinoids were collected and identified from the Eocene rocks cropping out in ther northern plateau of the Bahariya Depression that helped in age assignment and biostratigraphy of these successions. The stratigraphic sections described in this study are located at Gebel El-Garra El-Hamra (28° 37′ N - 29° 09' E), which represents the type section of the middle and upper Eocene formations (the Qazzun and the El-Hamra formations, respectively), El-Bahr (28° 38' N -29° 03′ E), Teetotum Hill (28° 25′ N - 29° 16′ E), and Gebel El-Dist (28° 25′ N - 28° 55′ E).

4. Lithostratigraphy

The Eocene stratigraphy in the Bahariya northern plateau has been a matter of much controversy. [7] classified the Eocene succession in this region into the Nagb Formation at base, followed upward by the Qazzun and El-Hamra formations, respectively (Fig. 2, 3). This succession overlies the inclined Upper Cretaceous rocks with a pronounced angular unconformity in-between. The Formation is a carbonate unit attaining a thickness of 20 - 30 m. The Nagb Formation is partly dolomitic, siliceous limestone, rugged and irregularly bedded. It unconformably overlies the tilted strata of the Bahariya Formation (early Cenomanian), and is overlain by the Qazzun Formation with seeming conformity. The Oazzun Formation is composed of bright, clean white chalky limestone with many calcite pockets, assuming a thickness of about ~32 m. The lithology of these two units i.e., the Naqb and Qazzun formations indicates

and points to a marked difference in depositional environments; shallow and disturbed by current action at base (the Naqb Formation), while quiet slightly deeper at top (the Qazzun Formation). The Qazzun Formation is followed upward by the El-Hamra Formation that has been lithologically subdivided by [21] into the Lower Hamra Member (~32 m-thick) and Upper Hamra Member (~32 m-thick). The lithology of the El-Hamra Formation as a whole points to

gradational development of clastics upward in the section. This probably what led [7] consider the whole section as one unit, only subdivided into two units when conglomerate was recorded in-between [21] The El-Hamra Formation is disconformably overlain by either fluviatile sandstone and ferruginous grits (6.0 to 12 m-thick) belonging to the Oligocene Radwan Formation [7] or by the lacustrine carbonates of the El-Ris Formation of late Oligocene Miocene? age [22].

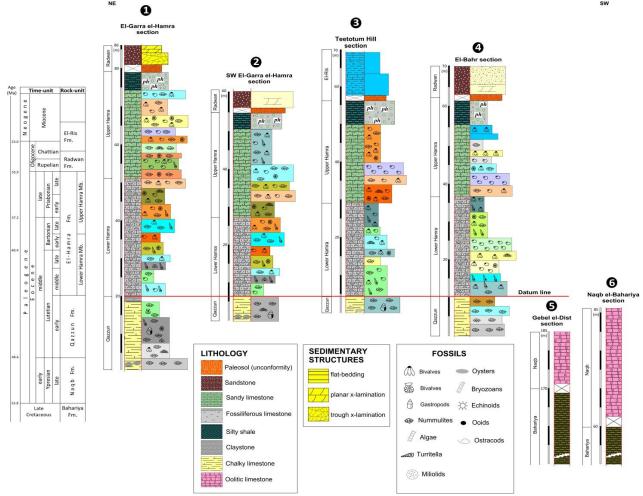


Fig. 2. Graphical lithostratigraphic logs of the studied Eocene sections.

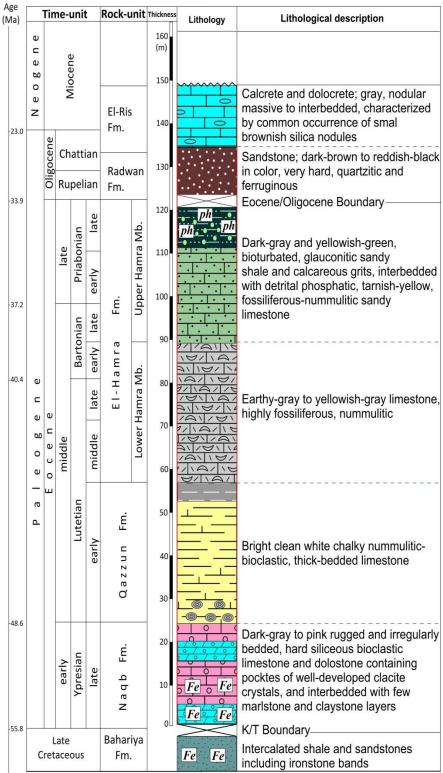


Fig. 3. Composite lithostratigraphic columnar section of the studied Eocene rock units in northern Bahariya Depression.

5. Facies associations and depositional palaeoenvironments

The investigated Eocene rocks consist mainly of sixteen microfacies types (mf1 to mf16) that form four genetically-related facies associations (FA1 through FA4) (Table 1). The FA1 and FA2 generally characterize a nearshore tide-dominated area with tidal flats and shallow subtidal in restricted to open lagoonal environments with restricted salinity, sluggish circulation and a non-diverse fauna. The depositional substrate was constantly influenced by waves [23]. nearshore and restricted lagoonal Shallow environments, down to about 50 m, are characterized porcelaneous miliolid foraminifera. concentrations characterize the Qazzun and El-Hamra formations in the studied sections, which confirm deposition in a marginal-marine setting, particularly in intertidal and shallow subtidal environments [24]. This interpretation is consistent largely with other analyses of shallow nearshore and restricted lagoonal environments with abundant miliolid foraminifera [25]. The FA3 and FA4 comprise barrier shoal and distal

lagoonal and platform margin environments, with a high to low/moderate energy, respectively. Larger benthic nummulitid foraminifers generally flourish in shallow carbonate inner and proximal mid-ramp settings [26]. Many nummulitides are limited to the euphotic zone because they prefer habitats within algal and sea grass meadows. Nummulitid foraminifers contribute significantly to the formation of carbonate sediments in reefs and in other shallow-marine carbonate environments [15, 16, 25, 26, 27, 28, 29, 30]. In addition, the frequently high abundance of molluscs, echinoids, bryozoans and calcareous algae suggests a shallow-marine, restricted-saline depositional setting, particularly, open lagoons and fringing reefal environments of moderateto-low energy [31].

Facies Associations /Microfacies types	Textural components	Interpreted depositional environments
mf1: Lime-mudstone	0.5–2.0 m-thick, earthy-gray to grayish-brown homogenous micrite with few disseminated quartz grains and bioclastic particles.	Low-energy tidal flat (FZ8) and arid evaporitic coastline (FZ9) environments reflecting a short-term of
mf2: Dolomicrite	Anhedral to subhedral dolomite rhombs ranging in size from 10 to 15 μm. Hypidiotopic fabric with equigranular texture. Unzoned crystals showing cloudy cores and clear outer peripheries.	sea-level fall. It is consistent with the SMF23. Dolomitization most probably took place in the early diagenesis, and is related mostly to hypersaline brines of a tidal flat-inner lagoon setting.
mf3: Foraminiferal dolomicrite	Similar to the above-described mf2, with few skeletal particles, commonly larger benthic foraminifera and bioclastics, which are partially/fully dolomitized.	
mf4: Sandy bioclastic rudstone	It consists mainly of oyster shells, gastropods and minor nummulites showing aggrading neomorphism and embedded in a micritic matrix.	Neritic, littoral-sublittoral, high to moderate-energy subtidal and intertidal zones (FZ7 & FZ8).
mf5: Laminated- glauconitic-anhydritic- sandy shale	laminated glauconitic-gypseous-sandy shale with few small scale cross-bedded sandstone, siltstone and marlstone intercalations. Glauconite grains show yellowish-green to dark-green, rounded to subrounded, fine to medium-grained (100–350μm), well-sorted to poorly-sorted pellets embedded in a dark ferruginous clayey matrix. Glauconite pellets also fill foraminiferal and fossil shells. Anhydrite crystal laths were also common.	Slow sedimentation rates in a reduced shallow-water nearshore tidal flat to restricted inner ramp lagoonal environments (FZ7–9), influenced by wave energy, and continuously received high influx of terrigenous siliciclastic sediments.
mf6: Miliolidal foraminiferal wacke- to packstones	It is made up of abundant larger (<i>Orbitolites</i> , <i>Alveolines</i>) and miliolidal (<i>Pseudolacazines</i> , <i>Biloculina</i> , <i>Quincloculina</i> , <i>Rhabdorites</i>) foraminifera, with a few occurrence of calcareous algae, crinoids, echinoid spines; all are embedded in a microsparitic matrix.	Low-energy neritic, restricted inner ramp lagoonal environment (FZ8), epipelagic euphotic, under a sluggish to open circulation and high saline shallow-water and eutrophic (high nutrient level) conditions.

P7 - A1 1 C 1 1 C 1	T1.:	
mf7: Algal foraminiferal	This microfacies consists of nummulites, algal	
wacke- to packstones	debris and small miliolidal foraminifera that are	
	embedded in a microsparitic matrix. Some	
	bioclasts exhibit micritization and/or micrite	
	coatings and patchy neomorphism is present in	
60 E ' 'C 1	the micritic matrix.	
mf8: Foraminiferal	The mf8 consists of floated foraminiferal	
wackestones	species distributed within a microsparitic to	
60 0 1 1: . 1 . 1	micritic matrix.	
mf9: Sandy bioturbated	It is composed of molluscan shell fragments,	
bioclastic wacke- to	bryozoan debris and few miliolidal foraminifera	
packstones	that are embedded in a micritic matrix.	T
mf10: Ferruginous	Hematitic and goethitic spherical to irregular-	Low-energy, proximal lagoons and
oolitic–pisolitic wacke-	shaped and curved grains of ooids (less than 2	restricted bays, with sluggish water.
to packstones	mm in diameter) and pisoids (larger-sized) with quartz nuclei and a cortex of concentric	
	hematite/goethite laminae that are cemented by	
	ferroan calcite. Bioclastics are also impregnated	
	by hematite/goethite.	
mf11, 12: Foraminiferal	Coated grains of ooids/pisoids, and pelloids and	Winnowed platform margin-restricted
ooidal/pelloidal wacke-	miliolid foraminmiferal shells embedded in a	lagoonal environments (FZ6), with a
to packstones	microsparitic matrix. Some bioclasts enveloped	normal marine salinity, high-energy,
to packstones	by micrite coatings, others show aggrading	open circulation and constant wave
	neomorphism and filled with sparite cement.	action.
mf13: Nummulitic	It consists of bioclasts mainly nummulites,	Tropical to subtropical, outer open
wacke-, pack- to	assilina and operculines with minor oyster shell	lagoon-platform margin reefs with
grainstones	debris and subordinate ratio of quartz grains,	photic, warm, open to moderate
g	embedded in a micritic matrix, partly	current circulation, and high nutrient
	microsparitic.	levels (eutrophic) in the platform
mf14: Burrowed	It is composed of bioclasts of oyster shell	interior—open marine (FZ7 and FZ9).
bioclastic rudstones	fragments, gastropods and a few larger benthic	1
	foraminifera embedded in microsparitic matrix.	
mf15: Echinoidal	It consists of echinoid spines, crinoids and other	
wackestones	bioclastic shell fragments.	
mf16: Bryozoan	It consists of bryozoan fragments, in addition to	
framestones	larger foraminifers, bioclasts and quartz grains	
	embedded in a micritic, partly sparitic matrix.	

Table 1. Summary of microfacies types, facies associations and their related depositional palaeoenvironments of the studied Eocene rocks exposed in northern Bahariya Depression.

Based on lateral and vertical facies and faunal distributions, it can be concluded that the lower-upper Eocene rocks in the area under study were deposited primarily in marginal-marine environments situated on a gently-dipping homoclinal inner to proximal midramp setting, with restricted salinity and sluggish to good water circulation (Fig. 4). Homoclinal ramps are shallow epeiric and pericontinental platforms distinguished by mild depositional slopes, passing downwards from a shallow nearshore, high-energy facies into deeper-marine offshore facies without a discernible break in slope [32]. The physical characteristics of facies belts are goverened largely by energy levels incluging fair-weather wave base

(FWWB) and storm wave base (SWB), differences in ramp topography, and material transport by waves, tides and storms. The dip angle of slope is generally less than 1°, but steeper dips may occur. The inner ramp setting embraces open marine environments with good water circulation, protected environments with sluggish water circulation, barrier shoal environment marked by oolitic and bioclastic grainstones and packstones, restricted lagoonal environments behind shoals or islands, and peritidal environments [33]. Most common microfacies textures of open and protected inner ramps are bioclastic—nummulitic packstones, grainstones and wackestones. Reefal

limestones (mollusc-reefs) are common in open inner ramps.

The facies associations of the Naqb Formation are interpreted to represent deposition in peritidal, coastal lagoons and shoal settings, whereas the Qazzun Formation typifies deposition in a calm, slightly deeper open lagoon—reefal environment. The facies associations of the El-Hamra Formation are considered to represent a noticeable facies change from open lagoon—reefal carbonate facies of the Lower Hamra Member, into shoreline tidal flat—winnowed edge glauconitic siliciclastic—dominated facies of the Upper Hamra Member. The facies characteristics of the

Upper Hamra Member with the marked increase of sand, marl and clay content, as well as the prevalence of glaucony facies with primary gypsum layers at top indicate the continuous shallowing-up associated with the gradual rereat of the Priabonian shoreline northward. Caliche nodules formed within the topmost part of the El-Hamra Formation represent also good criteria for full marine regression and subaerial exposure preceding the deposition of the Oligocene fluviatile sandstones.

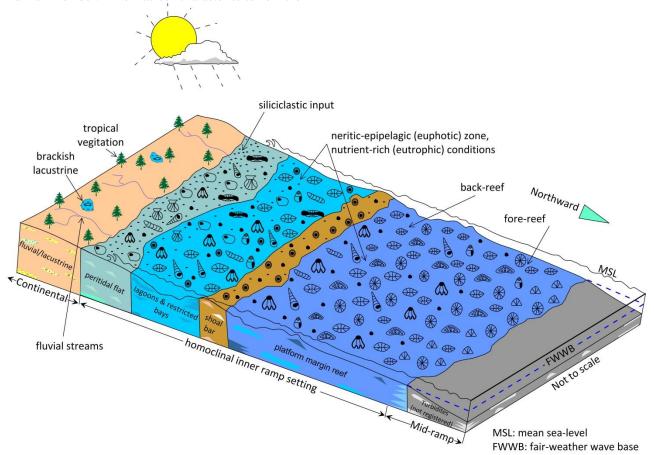


Fig. 4. Depositional model of the studied Eocene siliciclastic—carbonate succession in northern Bahariya Depression.

6. Biostratigraphy and palaeoecological attributes

The lower-middle Eocene rocks exposed in northern Bahariya Depression yield abundant larger benthic foraminifera particularly nummulites, assilines, operculines, orthophragmines, orbitolites, in addition to abundant presence of benthic macrofossils of bivalves, gastropods, nautiloids, echinoids and bryozoans. These benthic fauna were predominantly

inhabited in the inner neritic, near-coast tide-dominated zone (<100 m depth), which is characterized by warm water with normal to restricted salinity, and sluggish to open water circulation necessary for transferring nutrients to the lagoons and reefs [24]. Apparently, there was a significant upward change of paleoecological attributes throughout the lower-upper Eocene succession triggered by variation

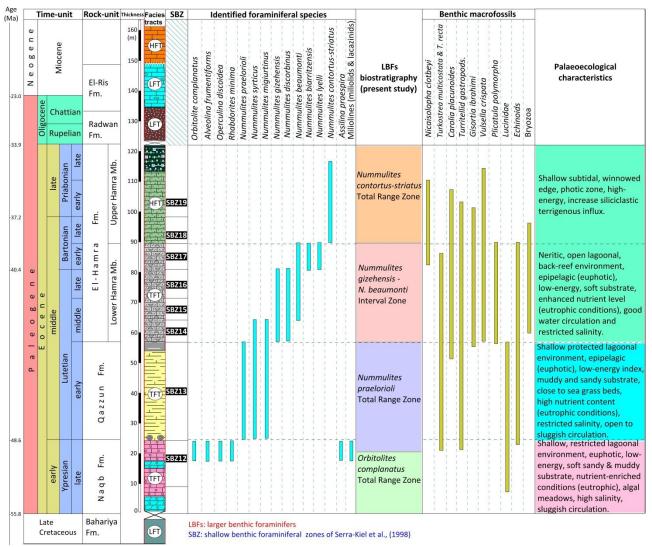
in neritic siliciclastic inflow due to tectonic and climatic instability. In this study, miscellaneous faunal assemblages of both benthic larger foraminifera and macrofossils have been identified and profoundly described below.

6.1. Larger benthic foraminiferal (LBFs) assemblages

Paleontological studies of the Eocene carbonate succession exposed in the northern Bahariya Depression revealed abundant shallow-water larger benthic foraminiferal (LBFs) content [34]. Their frequently high abundance and diversity make them extremely important biostratigraphic tools assignment the relative age of the studied Eocene rock units. In this study, four local larger benthic foraminiferal zones were identified from the lowerupper Eocene rocks (Fig. 5). These zones correspond to the regional shallow benthic foraminiferal zones (SBZ12 through SBZ19) [35], which established across the Tethyan carbonate platforms. The identified LBFs zones in the studied Eocene succession are arranged from base to top, as follows: (1) Orbitolites complanatus Total Range Zone (late Ypresian = SBZ12), (2) Nummulites praelorioli Total Range Zone (late Ypresian–early Lutetian = SBZ12 & SBZ13), (3) Nummulites gizehensis-Nummulites beaumonti Interval Zone (middle Lutetian-early Bartonian = SB14-SBZ17), and (4) Nummulites contortus-striatus Total Range Zone (late Bartonian-Priabonian = SBZ18 & SBZ19). The identified LBFs species are shown in (Fig. 6).

6.1.1. Orbitolites complanatus Total Range Zone

This foraminiferal zone occurs in the upper part of the Naqb Formation, and is marked by common occurrence of *Orbitolites complanatus*. It ranges from 3.0 to 8.0 m-thick at the upper parts of the Naqb El-Bahariya and 4.0 km northeast of mines city sections, respectively. Other foraminiferal species identified in this zone include *Alveolina frumentiformis, Assilina praespira, Operculina discoidea, Planotrillina deserti, Nummulites subramondi, Rhabdorites minima* and


miliolids in the form of *Quinqueloculina* and *Biloculina*. Some forms of calcareous dasyclad algae were also observed. This total range zone is correlated with the SBZ12 of [35] that allowed assigning a late Ypresian (early Eocene) age to the Naqb Formation [34].

6.1.2. Nummulites praelorioli Total Range Zone

The Nummulites praelorioli zone is defined by the total range of the Nummulites praelorioli Herb & Schaub, 1963. This zone is recognized within the chalky limestone beds of the Qazzun Formation at Gebel El-Garra El-Hamra and El-Bahr sections with thicknesses ranging from 18 to 30 m, respectively. Other associated benthic foraminiferal species identified from this zone are Nummulites syrticus, Nummulites cailliaudi and Nummulites variolaria. The identified Nummulites praelorioli Total Range Zone corresponds to the SBZ12 and SBZ13 of [35] that allowed assigning an early Lutetian age to the Qazzun Formation.

6.1.3. Nummulites gizehensis-Nummulites beaumonti Interval Zone

The lower boundary of this zone is determined by the first occurrence (Fo) of the Nummulites gizehensis (Forskål, 1795) at the base of the Lower Hamra Member and its upper boundary is defined by the last occurrence (Lo) of the Nummulites beaumonti d'Archiac & Haime. The thickness of this zone ranges between 32 m-thick of the Lower Hamra Member at the Gebel El-Garra El-Hamra section, and 14 m-thick at the El-Bahr section to the northeastward. In addition to the two marker species, the zone includes other Nummulites species; Nummulites migiurtinus Nummulites discorbinus (Schlotheim) and Nummulites lyelli d'Archiac & Haime. The identified gizehensis-Nummulites Nummulites beaumonti Interval Zone corresponds to the SBZ14, SBZ15, SBZ16 and SBZ17 of [35], which allowed assigning a middle Lutetian-early Bartonian age to the Lower Hamra Member.

Fig. 5. Biostratigraphic chart demonstrating the larger benthic foraminiferal zones with respect to the shallow larger benthic foraminiferal zones (SBZ) of [35] and other benthic macrofossils identified from the Eocene rock units exposed in the studied area, with their palaeoecological characteristics.

6.1.4. Nummulites contortus-striatus Total Range Zone

The *Nummulites contortus-striatus* Total Range Zone is marked by the total range of the *Nummulites contortus-striatus* identified from the middle and upper parts of the Upper Hamra Member. It

attains a thickness of about 14 m in the Upper Hamra Member in the Gebel El-Garra El-Hamra section, and about 8 m at El-Bahr section. This zone can be correlated with the SBZ18 and SBZ19 of [35] that allowed assigning late Bartonian—Priabonian age to the Upper Hamra Member.

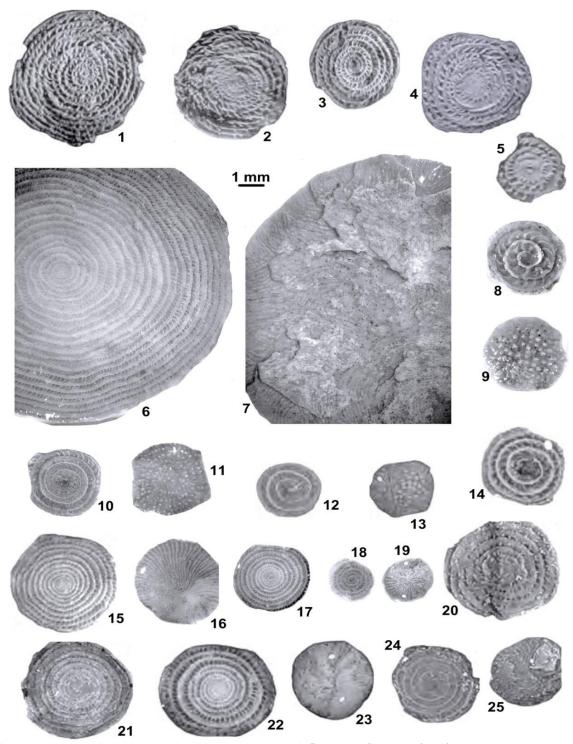


Fig. 6. Larger benthic foraminifera photographs showing: 1–5 Nummulites praelorioli Herb & Schaub, 1963; 1–4 microspheric forms; 5 megalospheric form. All specimens are equatorial sections. 6–14 Nummulites gizehensis (Forskål, 1795); 6, 7 microspheric forms; 8–14 megalospheric forms; 6, 8, 10, 12, 14 equatorial sections; 7, 9, 11, 13 external view. 15–19 Nummulites beaumonti D'archiac & Haime, 1853; 15, 16, 17 microspheric forms; 18, 19 megalospheric forms; 15, 17, 18 equatorial sections; 16, 19 external view. 20 Nummulites syrticus Schaub, 1981; microspheric form; equatorial section. 21 Nummulites biarritzensis D'archiac & Haime, 1853; microspheric form; equatorial section. 22–23 Nummulites discorbinus (Schlotheim, 1820); microspheric forms, 22 equatorial section; 23 external view. 24–25 Nummulites lyelli

D'archiac & Haime, 1853; megalospheric forms; **24** equatorial section; **25** external view. The scale bar is 1 mm.

6.2. Benthic macrofaunal assemblages

Benthic macrofossils bivalves, gastropods, bryozoans and echinoids) collected from the studied Eocene rocks provide significant information about the palaeoecological palaeoenvironmental conditions prevailed during their deposition [36]. Five distinctive macrofaunal assemblages have been identified from the studied lower-upper Eocene exposures in the northern limestone plateau of the Bahariya Depression. These faunal assemblages are described and interpreted in terms of palaeoecological conditions, and are shown in (Fig. 7, 8).

6.2.1. Lucinidae-dominated assemblage

This faunal assemblage occurs dominantly in the carbonate strata of the Nagb Formation exposed at Nagb El-Bahariya and the uppermost part of Gebel El-Dist in the floor of the Bahariya Depression. This fossil assmbelage is commonly represented by Lucina thebaica and Lucina polythele. Other macrofossils associated with this assemblage include Spondylus aegyptiacus, Cassis nilotica, Cardium sp., and Natica sp. Palaeoecologically, the Lucinidae are mobile, shallow-marine, filter-feeding bivalves that live infaunally, in deeply buried soft sediments that are often reduced and contain high concentrations of sulfides. Lucinidae significantly contributed to shallow-marine carbonate platforms, specifically since the Paleozoic following the decline of brachiopods [36].

6.2.2. *Turkostrea multicostata*-dominated assemblage

Turkostrea multicostata-dominated The assemblage is recorded from the lower and middle parts of the Oazzun Formation and the Lower Hamra Member exposed at the El-Bahr and Gebel El-Garra El-Hamra sections. This fossil assemblage is rich in epifaunal suspension-feeding organisms indicating a shallow-marine environment, with inner neritic, nutrient-rich (eutrophic conditions) sedimentation rates [38]. Turkostrea multicostata is reef-like building oysters thriving in shallow warm waters. It forms several lags of shell concentrations formed by multiple reworking associated with winnowing of fine-grained sediment and corrosion. Other macrofossils identified from this assemblage include the oyster Turkostrea recta, the gastropods ibrahimi, Gisortia gigantica Heligmotoma sp., Thenautiloid Deltoidonautilus sp., and the irregular echinoid Conoclypus delanouei.

6.2.3. Turritelline-dominated assemblage

This assemblage constitutes several turritelline-dominated concentrations in the Oazzun and Lower Hamra rock units in the El-Bahr and Gebel El-Garra El-Hamra sections. The most common turritelline gastropod species identified from this assemblage are Turritella zetteli, Turritella lessepi and Turritella sp., often associated with the bivalve Carolia placunoides. Palaeoecologically, gastropods are ubiquitous all over shallow-marine environments, and they are able to tolerate variabilty and excesses of water salinity [36]. Turritelline gastropods are often the most abundant species in the shallow subtidal habitates and benthic communities in which they exist, forming turritelline-dominated assemblages [39]. They tend to live in soft-bottom communities associated with high levels of nutrients (eutrophic conditions) and primary productivity [40, 41]. Turritelline gastropods are widely distributed in temperate, subtropical to tropical waters, and generally inhabit depths of more or less 10-100 m [42]. They essentially flourish in normal marine salinities [43]. The frequently high abundance of such sessile, semi-infaunal, deposit/suspensionfeeding turritelline gastropods suggests moderate rates sedimentation in neritic-subtidal palaeoenvironments [37, 38].

6.2.4. Carolia placunoides assemblage

The Carolia placunoides assemblage is recorded from both the Qazzun and the Hamra formations. It forms several shell concentrations within formations. Palaeoecologically, placunoides is attached, epifaunal suspension-feeding bivalve living in monospecific communities. The presence of Corolia placunoides indicates a firm substrate, slow sedimentation rates and nutrient-rich community, with low-salinity conditions during regressed shoreline and sea-level fall [44]. Therefore, the frequently high abundance of the Carolia placunoides fossil assemblage within the studied Eocene rocks indicates deposition in a nearshore, lagoonal environment across a marginal-marine setting. A comprehensive palaeoecological study of a similar Carolia-dominated assemblage in the nearby Faiyum Depression indicated that the predation and parasitic elements, as well as changing environmental conditions were the main factors that caused the extinction of the genus Carolia in the latest Eocene in Egypt [45]. Increased water turbidity during postmiddle Eocene might also create stressful conditions for such autotrophic taxa causing decrease of their frequency and abundance, and ultimately led to their entire extinction [46].

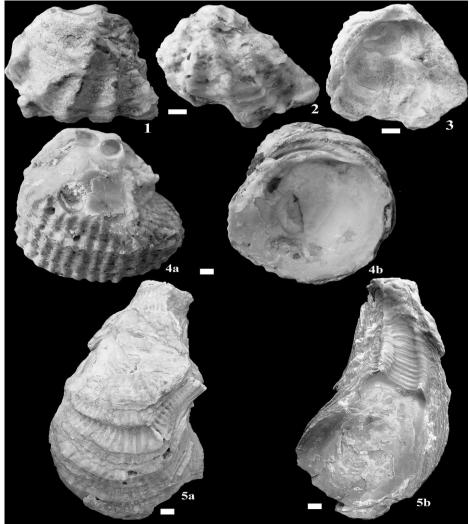


Fig. 7. Benthic macrofossil photographs showing: 1–3 *Nicaisolopha clotbeyi* (Bellardi, 1854); 1, 2 external views of the left valves, 3 internal view of left valve. 4 *Turkostrea multicostata* (Deshayes, 1818); 4a external view of left valve, 4b internal view of left valve. 5 *Turkostrea recta* (Oppenheim, 1903); 5a external view of left valve, 5b internal view of left valve. The bar scale is 10 mm.

6.2.5. Nicaisolopha clotbeyi-dominated assemblage

This fossil assemblage is recorded from the limestone beds of the El-Hamra Formation in the El-Gara El-Hamra, El-Bahr and Teetotum Hill sections. They form several lags of oyster shell concentrations, produced mainly by multiple reworking associated with winnowing of fine-grained sediment. This faunal

assemblage includes high diversity of other epipelagic, euphotic, shallow warm water organisms such as *Carolia placunoides*, *Masalia locardi*, *Masalia blanchenhorni*, *Cerithium* sp., and *Vulsella crispat*a, indicating inner neritic, eutrophic conditions of high nutrient levels and slow sedimentation rates.

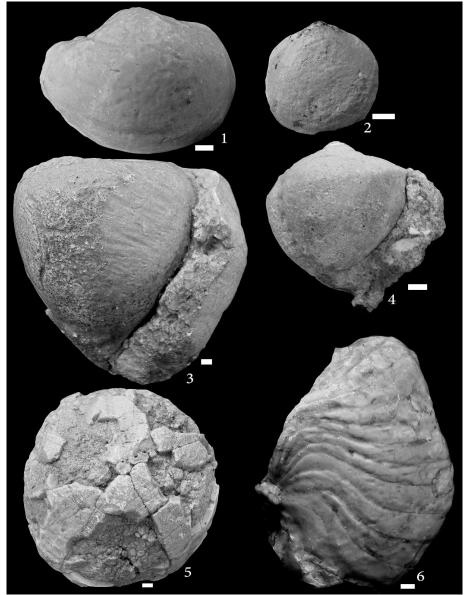


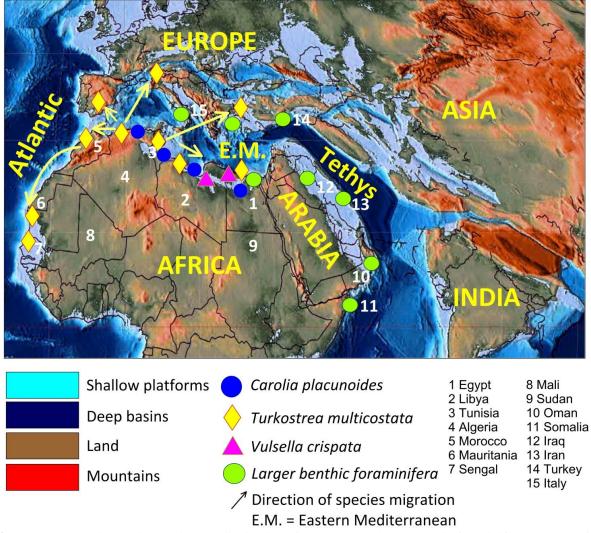
Fig. 8. Benthic macrofossil photographs showing: 1 Lucina thebaica (Oppenheim, 1903), external view. 2 Lucina polythele (Oppenheim, 1903), external view. 3 Gisortia ibrahimi (Abbass, 1967). 4 Heligmotoma sp., apertural view. 5 Conoclypus delanouei (De Loriol, 1880), adapical view. 6 Deltoidonautilus sp., side view. The bar scale is 10 mm.

6.3. Regional palaeobiogeographic distribution

Inner to mid-ramp foraminiferal accumulations occur abundantly along the continental margins of the Tethys. They are dominated by larger benthic foraminifera (LBFs) including nummulitids, alveolinids, orbitolitids, assilinids and orthophragminids [47, 48, 49]. The detailed petrographic study of LBFs biofacies is essential to elucidate the paleodepositional settings of such shallow carbonate ramps. In the study area, the faunal assemblages, either the benthic larger foraminifera or

benthic macrofossils identified from the studied Eocene successions have a dominantly Tethyan affinity. Both faunal assemblages reflect shallow subtidal, restricted and open lagoonal to reefal palaeoenvironments of marginal-marine carbonate ramps. Similar assemblages of larger benthic foraminifers (LBFs) particularly those of orbitolites, nummulites and alveolines were recorded from different Eocene successions in the African, Arabian, Indian, Middle East and southern Europe shallow carbonate platforms (Fig. 9). In northern Africa, for example, these foraminiferal assemblages were

registered from the Eocene rocks exposed in different localities in Egypt e.g., Bahariya, Siwa and Faiyum depressions, Gebel Mokattam, Helwan area, Gebel Ataga-Northern Galala blocks and along the Cairo-Suez district [50, 51]. Similar Eocene foraminiferal species were also recorded from the subsurface Gialo Limestone in the Sirt Basin in Libya [52], the Halk El-Menzel and El-Garia formations of the Pelagonian shelf along offshore Tunisia [53], and the Karkar Formation in Somalia [54]. The Paleocene-Eocene foraminiferal limestone facies form significant hydrocarbon reservoirs in offshore Tunisia and Libya [55]. In the Arabian–Iranian–Indian carbonate platforms, these foraminiferal taxa were described from the Dammam Formation in Dhofar of Oman [56], the Naopurdan Shaly Series in Iraq [57] the Jahrum Formation in the Zagros of Iran [58] and the middle Eocene Fulra Limestone and Oligocene Maniyara Fort Formation at the north-western margin of India [59] In southern Europe, similar foraminiferal assemblages were also recorded from the Eastern Taurides in southern Turkey [14, 60], the Bartonian Capo Mortola Calcarenite Formation from Olivetta San Michele in NW Italy [46], the middle/upper Eocene boundary in the Veneto area in northern Italy [61] the Ebro basin in Spain [62] and many other countries in the northern bank of the Mediterranean basin.


Likewise, many benthic macrofauna such as *Turkostrea multicostata*, *Carolia placunoides*, *Vulsella crispata* and Turritellid gastropods identified from the studied Eocene successions display a widespread palaeobigeographic distribution in the northern, southern and western Neo-Tethyan regions (Fig. 9). For example, *Turkostrea multicostata* was recorded from the Paleocene sediments in Tunisia [63] and Algeria [64] in northern Africa, as well as from the

Paleocene sediments formed in the trans-Saharan seaway in Mali [65]. By the advent of the Eocene, *Turkostrea multicostata* widely spread into India, northwestern Europe and covered the whole northern African regions in the southern Neo-Tethys [45]. For instance, it is recorded from the lower Eocene sediments in Mauritania and Senegal [66]. in northwestern Africa, and from lower Eocene sediments in north-eastern Africa [67] The fossil *Turkostrea multicostata* is also recorded from the middle and late Eocene rocks in Senegal, Morocco, Libya and Egypt [37, 68, 69].

The fossil *Carolia placunoides* Cantraine, 1838 was recorded from the lower Eocene sediments in Senegal in north-western Africa [70] as well as from the lower Eocene rocks in Egypt and Indian-Pakistani region, and spread out all over the Neo-Tethyan domain. In the middle and late Eocene, *Carolia placunoides* exhibited a wider geographic distribution, since it is recorded from the middle Eocene rocks in Senegal [70] Mali [71] in north-western Africa, Tunisia [72] and Algeria [73] in northern Africa. The fossil *Carolia placunoides* was also recorded from the upper Eocene rocks in the south-eastern Tethys provinces in Libya [74] and Egypt [45, 75, 76].

The fossil *Vulsella crispata* was recorded from the middle and upper Eocene sediments in Libya and Egypt in north-eastern Africa [77, 78].

From the foregoing discussion, it can be summarized that many of the identified early-late Eocene benthic foraminiferal and macrofaunal assembalges in the Bahariya study area have a broad geographic distribution covering large tracts throughout the African, Arabian, Middle East and southern Europe marginal-marine carbonate platforms.

Fig. 9. Palaeogeographic map illustrating the distribution of some Eocene larger benthic foraminifera and macrofauna across northern African, Mediterranean and Tethyan (remnant) territories (the palaeogeographic map is sourced from [79].

7. Conclusions

The Eocene rocks cropping out in the northern Bahariya Depression constitute from base to top, the Naqb, Qazzun and El-Hamra formations deposited in shallow-marine, neritic (littoral and sublittoral), tide-dominated environments positioned on a gently dipping inner to very proximal mid-ramp settings. Four local larger benthic foraminiferal zones, corresponding to the regional larger benthic foraminiferal zones (SBZ12 to SBZ19) of the Tethyan shallow carbonate platforms, were identified. These zones allowed assigning a late Ypresian age to the Naqb Formation, an early Lutetian age to the Qazzun Formation, and a middle Lutetian–Priabonian age to the El-Hamra Formation. Five distinctive macrofossil assemblages were also identified. These benthic fauna were

predominantely inhabited in the inner neriticepipelagic, near-coast tide-dominated zone (<100 m depth), which is characterized by warm water with normal to restricted salinity, and sluggish to open water circulation necessary for carrying nutrients to the lagoons and reefs. Apparently, there was a significant upward change of paleoecological attributes across the lower-upper Eocene succession triggered by variation in neritic siliciclastic inflow due to tectonic and climatic instability. Paleobiogeographically, identified foraminiferal and macrofaunal assemblages have a dominantly Tethyan character, displaying strong affinity to the African, Arabian, Indian-Iranian and southern Europe marginal-marine carbonate platforms.

Acknowledgements

This manuscript is a part of the M.Sc. Thesis of the first author (N.A.). The authors are indebted to Prof. Josep Serra-Kiel (Barcelona University, Spain) for his help in identifying the larger benthic foraminiferal species and Prof. El-Sayed Moneer (Al-Azhar University, Egypt) for identifying the macrofossils collected from the studied Eocene rocks. Special thanks to Prof. Gamal El-Qot (Benha University, Egypt) for his thorough examination of this manuscript and the many helpful comments.

References

- [1] Hallock, P. (1981). Production of carbonate sediments by selected Large Benthic Foraminifera on two Pacific Coral Reefs. *Journal of Sedimentary Petrology*, 51 (2), 467-474.
- [2] Beavington-Penney, S.J., & Racey, A. (2004). Ecology of extant nummulitids and other larger benthic foraminifera: applications in palaeoenvironmental analysis. *Earth-Science Reviews*, 67, 219-265.
- [3] BouDagher-Fadel, M.K., & Price, G.D. (2013). Evolution and paleogeographic distribution of the Lepidocyclinids. *Journal of foraminifera research*, 41 (1), 79-108 (Paris) vol. 1 (1–26), 392, 65 pls; 2(2-46), 814 pp., 103 pls
- [4] Zoeram, F.Z., Vahidinia, M., Sadeghi, A., Mahboubi, A., & Bakhtiar, H.A. (2015). Larger benthic foraminifera: a tool for biostratigraphy, facies analysis and paleoenvironmental interpretations of the Oligo-Miocene carbonates, NW Central Zagros Basin, Iran. Arabian Journal of Geosciences, 8, 931-949.
- [5] Afife, M., Sallam, E.S., & Faris, M. (2017). Integrated petrophysical and sedimentological study of the Middle Miocene Nullipore Formation (Ras Fanar Field, Gulf of Suez, Egypt): An approach to volumetric analysis of reservoirs. *Journal of African Earth Sciences*, 134, 526-548.
- [6] El Akkad, S., & Issawi, B. (1963). Geology and iron ore deposits of the Bahariya Oasis: Geological Survey and Mineral Research Department, Egypt, Paper 18, 301 p
- [7] Said, R., & Issawi, B. (1964). Geology of northern plateau, Bahariya oasis, Egypt. *Geological Survey of Egypt*, Paper 29, 41 pp.
- [8] Guiraud, R., Issawi, B., & Bosworth, W. (2001). Phanerozoic history of Egypt and surrounding areas. In: P.A. Ziegler, W. Cavazza, A.H.F. Robertson & S. Crasquin-Soleau (eds.), Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mém. Mus. natn. Hist. nat., 186, 469-509

- [9] Moustafa, A.R., Saoudi, A., Moubasher, A., Ibrahim, I.M., Molokhia, H., & Schwartz, B. (2003). Structural setting and tectonic evolution of the Bahariya Depression, Western Desert, Egypt. *GeoArabia* 8 (1), 91-124.
- [10] Sallam, E.S., Issawi, B., & Osman, R. (2015a). Stratigraphy, facies, and depositional environments of the Paleogene sediments in Cairo-Suez district, Egypt. Arabian Journal of Geosciences, 8 (4), 1939–1964.
- [11] Sallam, E.S., Wanas, H.A., & Osman, R. (2015b). Stratigraphy, facies analysis and sequence stratigraphy of the Eocene succession in the Shabrawet area (north Eastern Desert, Egypt): An example for a tectonically influenced inner ramp carbonate platform. *Arabian Journal of Geosciences* 8 (12), 10433-10458
- [12] Zobaa, M.K., Sallam, E.S., & Oboh-Ikuenobe, F.E. (2015). Palynological evidence for epicontinental dry subtropical to temperate climatic conditions during the Eocene in the southeast Mediterranean. *Geological Society of America, Abstracts and Program* 47 (7): 142.
- [13] Sinanoğlu, D., Erdem, N.Ö., & Sallam, E.S. (2018). Bartonian benthic foraminifera: Examples from the Arabian and North African carbonate platforms. 20th EGU General Assembly, EGU2018, Proceedings from the conference held 4-13 April, 2018 in Vienna, Austria, p.6500. 2018EGUGA..20.6500S.
- [14] Sallam, E.S., Erdem, N.Ö., Sinanoğlu, D., & Ruban, D.A. (2018). Mid-Eocene (Bartonian) larger benthic foraminifera from southeastern Turkey and northeastern Egypt: New evidence for the palaeobiogeography of the Tethyan carbonate platforms. *Journal of African Earth Sciences*, 141, 70-85.
- [15] Sallam, E.S., Ruban, D.A., & Van Loon, A.J. (2022a). Lagoonal carbonate deposition preceding rifting-related uplift: evidence from the Bartonian-Priabonian (Eocene) in the northwestern Gulf of Suez (Egypt). *Journal of Palaeogeography*, 11 (1), 8-30 (00254).
- [16] Sallam, E.S., Ruban, D.A., & Ermolaev, E.A. (2022b). Geoheritage resources and new direction of infrastructural growth in Egypt: From geosite assessment to policy development. *Resources Policy*, 79, 103127.
- [17] Issawi, B., & Osman, R. (2008). Egypt during the Cenozoic: Geological history of the Nile River. *Bulletin of the Tethys Geological Society*, 3, 43–62.
- [18] Plyusnina, E.E., Sallam, E.S., & Ruban, D.A. (2016). Geological heritage of the Bahariya and Farafra oases, the central Western Desert, Egypt. *Journal of African Earth Sciences*, 116, 151-159

- [19] Mousa, F.A., Abu El-Hassan, M.M., Wanas, H.A., Sallam, E.S., Ermoliev, V.A., & Ruban, D.A. (2023). Geoheritage meaning of past humidity in the central Western Desert of Egypt. *International Journal of Geoheritage and Parks*, 11, 331–348.
- [20] Mousa, F.A., Abu El-Hassan, H.A., & Sallam, E.S., (2024). Terminal Holocene palaeolake mudpans (playas) of Farafra Oasis, Western Desert, Egypt: Palaeoenvironmental and palaeoclimatic implications. *International Journal of Earth Sciences*, 113, 657–660.
- [21] Issawi, B., Francis, M., Youssef, A., & Osman, R. (2009). The Phanerozoic of Egypt: a geodynamic approach. *Geological Survey of Egypt*, special publication, 81, 1-589.
- [22] Wanas, H.A., Armenteros, I., Recio, C., Sallam, E.S., & Nieto, C.E. (2023). Distal fluvial to lacustrine/palustrine carbonate facies of the El-Ris Formation (Late Miocene?) at the Bahariya Depression, Western Desert, Egypt: Depositional model and controls. *Journal of African Earth Sciences*, 205, 104993.
- [23] Hunt, D., Tucker, M. (1992). Standed parasequences and the forced regressive wedge systems tract: deposition during base-level' fall. Sedimentary Geology, 81, 1-9.
- [24] Flügel, E. (2004). Microfacies of carbonate rocks: Analysis, Interpretation and Application. *Springer Berlin Heidelber, New York*, 976 pp.
- [25] Hottinger, L., (1997). Shallow benthic foraminiferal assemblages as signals for depth of their deposition and limitations. *Bull Soc Geol Fr.*, 168, 491–505.
- [26] Hallock, P., & Glenn E. (1986). Larger foraminifera: a toll for paleoenvironmental analysis of Cenozoic carbonate depositional facies. *Palaios*, 1, 55–64.
- [27] Ruban, D.A., & Sallam, E.S. (2016). Bajocian-Bathonian (Middle Jurassic) sea-level changes in northeastern Egypt: Synthesis and further implications. Journal of African Earth Sciences 120, p. 141-145
- [28] Ruban, D.A., Sallam, E.S., & Wanas, H.A. (2019). Middle–Late Jurassic sedimentation and sea-level changes on the northeast African margin: A case study in the Khashm El-Galala area, NE Egypt. *Journal of African Earth Sciences*, 156, 189–202.
- [29] Sallam, E.S., Afife, M.M., Fares, M., van Loon, A.J., & Ruban, D.A. (2019). Sedimentary facies and diagenesis of the Lower Miocene Rudeis Formation (southwestern offshore margin of the Gulf of Suez, Egypt) and implications for its reservoir quality. *Marine Geology*, 413, 48–70.

- [30] Sallam, E.S., & Ruban, D.A. (2020). Facies analysis and depositional environments of the Miocene syn-rift carbonate–siliciclastic rock packages in the northwest Gulf of Suez, Egypt. Carbonates and Evaporites, 35: 10.
- [31] Wilson, J.L. (1975). Carbonate Facies in Geologic History. *New York (Springer)*, 471 pp.
- [32] Read, J.F. (1985). Carbonate platform facies models. *Amer. Ass. Petrol. Geol. Bull.*, 69, 1-21.
- [33] Flügel, E. (2010). Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. *Springer Verlag, New York*, 996 pp.
- [34] Afify, A.M., Serra Kiel, J., Sanz-Montero, M.E., Calvo, J.P., & Sallam, E.S. (2016). Nummulite biostratigraphy of the Eocene succession in the Bahariya Depression, Egypt: implications for timing of iron mineralization. *Journal of African Earth Sciences*, 120, 44-55.
- [35] Serra-Kiel, J., Hottinger, L., Caus, E., Drobne, K., Ferrandez, C., Jauhri, A.K., Less, G., Pavlovec, R., Pignatti, J., Samso, J.M., Schaub, H., Sirel, E., Strougo, A., Tambareau, Y., Tosquella, J., & Zakrevskaya, E. (1998). Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bull. Soci. Geol. Fr. 169 (2), 281-299
- [36] Tucker, M.E. (1981). Sedimentary Petrology: An Introduction. *Blackwell Scientific Publications*. 2nd edition, Oxford, London, Geoscience texts, v. 3, 252pp.
- [37] Hannaa, W., & Fürsich, F.T. (2012). Palaeoecology and environmental significance of benthic associations from the Cenomanian-Turonian of eastern Sinai. Egypt. *Beringeria*, 42, 93–138.
- [38] Moneer, E.S., Hewaidy, A.A., Ayyad, H.M., Samir, A., Antar, M.S., El-Balkiemy, A.F., Bazeen, Y.S. (2024). Taxonomy, paleoecology, and paleobiogeographical significance of the middle-late Eocene molluscs from the Garet Gehannem section in the Fayoum depression, Egypt. *Journal of African Earth Sciences*, 214: 105231.
- [39] Shin, C.P., Allmon, W.D., Anderson, B.M., Kelly, B.T., Hiscock, K., & Shin, P.K.S. (2020). Distribution and abundance of turritelline gastropods (Cerithioidea: Turritellidae) in Hong Kong and the English Channel: implications for a characteristic fossil assemblage. *Journal of the Marine Biological Association of the United Kingdom*, 1–10
- [40] Allmon, W.D., Jones, D.S., Aiello, R.L., Gowlett-Holmes, K., & Probert, P.K. (1994). Observations on the biology of Maoricolpus roseus (Quoy and Gaimard) (Prosobranchia: Turritellidae) in New Zealand and Australia. *The Veliger*, 37, 267–279.

- [41] Teusch, K.P., Jones, D.S., & Allmon, W.D. (2002). Morphological variation in a turritellid gastropod from the Pleistocene to Recent of Chile: associations with upwelling intensity. *Palaios*, 17, 366–377.
- [42] Allmon, W.D. (2011). Natural history of turritelline gastropods (Cerithiodea: Turritellidae): a status report. *Malacologia*, 54 (1–2), 159–202.
- [43] Merriam, C.W. (1941). Fossil turritellas from the Pacific coast region of North America. *University of California Publications, Bulletin of the Department of Geological Sciences*, 26 (1): 1–214, pls. 1–41.
- [44] Carbonel, P., & Pujos, M. (1981). Comportment des microfaunes benthiques en milieu lagunaire. *Actis du Premier Congres Natl Sci de la Terre* (Tunis), pp. 127–140.
- [45] El-Shazly, S.H., Abdel-Gawad, G.I., Salama, Y.F., & Sayed, D.M. (2016). Paleontology, paleobiogeography and paleoecology of Caroliabearing beds from the late Eocene rocks at Nilefayum Divide, Egypt. *Journal of African Earth Sciences*, 124, 447–477.
- [46] Arena, L., Giraldo-Gomez, V.M., Baucon, A., Piazza, M., Papazzoni, C.A., Johannes Pignatti, J., Antonella Gandolfi, A., & Briguglio, A. (2024). Short-term middle Eocene (Bartonian) paleoenvironmental changes in the sedimentary succession of Olivetta San Michele (NW Italy): the response of shallow-water biota to climate in NW Tethys. *Facies*, 70: 4.
- [47] Racey, A. (2001). A review of Eocene Nummulite accumulations: Structure, formation and reservoir potential. *Journal of Petroleum Geology*, 24, 79-100
- [48] Beavington-Penney, S. J., Wright, V. P., & Racey, A. (2006). The Middle Eocene seeb formation of Oman: An investigation of acyclicity, stratigraphic completeness, and accumulation rates in shallow marine carbonate settings. *Journal of Sedimentary Research*, 76, 1137–1161.
- [49] Adabi, M.H., Zohdi, A., Ghabeishavi, A., & Amiri-Bakhtiyar, H. (2008). Applications of nummulitids and other larger benthic foraminifera in depositional environment and sequence stratigraphy: An example from the Eocene deposits in Zagros Basin, SW Iran. *Facies*, 54, 499–512.
- [50] Bignot, G., & Strougo, A. (2002). Middle Eocene benthic foraminiferal assemblages from eastern Egypt, as biochronological and peritethyan lagoonal indicators. *Revue De Micropaléontologie*, 45, 73–98.
- [51] Boukhary, M., Hussein, A. I. M., & El-Morcey, A. I. (2002). Eocene larger foraminifera from

- Helwan, Greater Cairo, Egypt. Revue de Micropaleontologie, 45, 27–47.
- [52] Belazi, H. S. (1989). The geology of the Nsfoora oilfield, Sirte Basin, Libya. *Journ. Petrol. Geol.*, 12, 353–366.
- [53] Bonnefous, J., & Bismuth, H. (1982). Les faciès carbonatés de plate-forme de l'Eocène moyen et supérieur dans l'off-shore tunisien nord-oriental et en mer pélagienne: implications paléogéographiques et analyse micropaléontologique. *Bull. Centre Rech. Explor.-Pord. Elf Aquitaine*, 6, 337–403.
- [54] Forteleoni, P.G., & Pirini, R.C. (1975). Microfaunas from the Karkar Formation (Somaliland). Proc. 5th African Coll. Micropal., Addis-Abeba, April 1972. Rev. Esp. Micropal., Madrid, 1, 385–415.
- [55] Racey, A., Bailey, H.W., Beckett, D., Gallagher, L., Hampton, M., & McQuilken, J. (2001). The Petroleum Geology of the Early Eocene El-Garia Formation, Hasdrubal Field, Offshore Tunisia. *Journal of Petroleum Geology*, 24 (1), 29-53.
- [56] Bourdillon De Grissac, Ch. (1988). Les Foraminifères benthiques de l'Eocène moyen ou supérieur du Dhofar, Sultanat d'Oman. Intérêt biostratigraphique, paléoécologique et paléogéographique. *Rev. Paléobiol.*, 2, 621–622.
- [57] Al Hashimi, H.A.J. (1975). Contribuion to the stratigraphy and micropaleontology of the Naopurdan Shaly Group in Chuwarta area, northeastern Iraq. *Journ. Geol. Soc. Iraq, Spec. Issue*, 27–36.
- [58] James, G.A., & Wynd, J.G. (1965). Stratigraphic nomenclature of the Iranian Oil Consortium Agreement Area. *Bull. A.A.P.G.*, 49, 2182–2245.
- [59] Banerjee, S., Khanolkar, S., & Saraswati, P.K. (2018). Facies and depositional settings of the Middle Eocene-Oligocene carbonates in Kutch. *Geodinamica Acta*, 30 (1), 119–136.
- [60] Sirel, E., & Acar, Ş. (1993). Malatyna a new foraminiferal genus from the Lutetian of Malatya region (East Turkey). *Geologia Croatica* 46, 181– 188
- [61] Papazzoni, C.A., & Sirotti, A. (1995). Nummulite biostratigraphy at the Middle/Upper Eocene boundary in the northern Mediterranean area. *Rivista Italiana di Paleontologia e Stratigrafia*, 101(1), 63–80.
- [62] Ferrer, J. (1971). El Paleoceno y Eoceno del borde sur-oriental de la depresión del Ebro (Catalufia). *Schweiz. Palaeont. Abb.*, v. 90, pp. 1-70, Basel.
- [63] Roux, H., & Douville, H. (1910). La g'eologie des environs de R'ed'eyef (Tunisie). *Bull. Soc. Geol. Fr.*, 4 (10), 646–659.

- [64] Flandrin, J. (1948). Contribution `a l'´etude stratigraphique du Nummulitique Alg´erien. Protat Fr`eres, Imprimeurs.
- [65] O'leary, M.A., Bouar'e, M.L., Claeson, K.M., Heilbronn, K., Hill, R.V., Mccartney, J., et al. (2019). Stratigraphy and paleobiology of the Upper Cretaceous-Lower Paleogene sediments from the trans-Saharan seaway in Mali. *Bull. Am. Mus. Nat. Hist.* 436, 1–183.
- [66] Freneix, S., & Gorodiski, A. (1963). Bivalves 'Eoc'enes du S'en'egal. Ie part. Nuculacea, Arcacea, Mytilacea, Pectinacea, Anomiacea, Ostreacea. M'em. Bur. Rech. g'eol. Min. 17
- [67] Strougo, A. (1977). Le "Biarritzien" et le Priabonien en Egypte et leurs faunes de Bivalves. *Travaux du Laboratoire de paleontology. Facult'e des sciences d'Orsay, Universit'e de Paris*, pp. 1–247.
- [68] Strougo, A. (1973). Observations sur les huitres du groupe multicostata de l'Eocene superieur d'egypte. *Proc. Egypt. Acad. Sci.*, 24, 135–139.
- [69] Kassab, W., Santos, A., El Hedeny, M., Al Farraj, S., Al Basher, G., & Rashwan, M. (2021). Late Eocene marginal marine deposits and paleoenvironment characterisation from the Maadi formation (northern eastern Egypt). *Proc. Geologists' Assoc.*, 132 (3), 346–357.
- [70] Douvill'e, H. (1920). L'Eoc`ene au Soudan et au S'en'egal. Bulletin du Comit'e d'Etudes Historiques et Scientifiques de l'Afrique Occidentale Française, 2, 113–171.
- [71] Longbottom, A. (2010). A new species of the catfish nigerium from the palaeocene of the Tilemsi Valley, republic of Mali. *Palaeontology* 53 (3), 571–594.
- [72] Pervinquiere, L. (1903). R´egence de Tunis Protectorat français Direction g´en´erale des travaux publics Carte g´eologique de la Tunisie Etude g´eologique de la Tunisie centrale, 359, 42 figs.
- [73] Haug, E. (1911). Trait'e do G'eologie, period numulitique. *Doc. Num'eris'e par Biblioth'eque interuniv. Sci. Jussieu e UPMC* 76, 8–pls.
- [74] Megerisi, M.F., & Mamgain, V.D. (1980). The upper Cretaceous-tertiary formations of northern Libya: a synthesis. *Department of Geological Researches and Mining Bulletin*, 12, 1–85.
- [75] Strougo, A. (1970). Observations sur la coquille de *Carolia placunoides* Cantraine. *Proc. Egypt. Acad. Sci.*, 23, 57–63.
- [76] Ayoub, N.A., Ahmed, S.M., Osman, R.A., Hassan, M.S., & Sallam, E.S. (2025). Facies evolution of the Eocene-Oligocene succession in Northern Bahariya Depression (Western Desert, Egypt): depositional controls,

- palaeoenvironments, and palaeobiogeography. Journal of Sedimentary Environments. https://doi.org/10.1007/s43217-025-00263-4
- [77] Abbass, H.L. (1973). A monograph on the Egyptian Paleocene and Eocene pelecypods. *Egypt. J. Geol.*, 16, 69–200.
- [78] Sayed, D.M., El-Shazly, S.H., Salama, Y.F., Badawy, H.S., & Abd El-Gaied, I.M. (2021). Macropaleontological and paleobiogeographical study of the upper Eocene succession at Beni-Suef-Zaafrana road, north eastern Desert, Egypt. Journal of African Earth Sciences, 174: 104046.
- [79] Scotese, C.R. (2014). Atlas of Paleogene paleogeographic maps (Mollweide Projection). Maps 8-15, Volume 1, the Cenozoic, PALEOMAP Atlas for ArcGIS. PALEOMAP Project, Evanston, IL