https://bjas.journals.ekb.eg/ Medical and Health Science

Left Ventricle Stroke Volume and Pulmonary Artery Systo lic Pressure as Predicto rs of Adverse Events in Patients with Pulmonary Embolism

Eslam M.Moustafa, Tarek H.Abo Elazm, Mahmoud Sh.Abdelmoniem and Basant S.Mohamed Cardiovascular Medicin e Dept., Faculty of Medicine, Benha University, Benha, Egypt Email: eslammabrouk1993@gmail.com

Abstract

Background: An severe, life-threatenin g illness, pulmonary embolism is anythin g from subtle. It occurs when a material that has made its way through the circulation from anothe r part of the body blocks an artery in the lungs. Clots in the pelvis or legs are the most common cause s of this material. When a blood vessel that feeds the lungs becomes blocked, it may cause serious harm or even death. Timely diagnosis and treatment are crucial in preventin g the potentially fatal effects of pulmonary embolism, which is the third most common cause of cardiovascular mortality globally. The many sympto ms and signs of PE may make it hard to diagnose, which can delay the start of potentially life-savin g the rapies. A number of risk scorin g systems and diagrams have been created to evaluate the clin ical likelihood of PE based on the patient's history, the results of the physical examin ation, and the results of the laborato ry tests. Purpose: This review article seeks to assess the in dex of Pulmonary Artery systo lic Pressure (PASP) and Left Ventricle Stroke Volume (LVSV) in relation to PESI and Bova scores for the purpose of predictin g unfavorable clin ical outcomes in Patients with pulmonary embolism. In conclusion, pulmonary embolism (PE) is one of the most serious medical problems that may cause serious illness or death. It is necessary to thoroughly evaluate the effect of recent advancements in PE on patient treatment sin ce the area has seen rapid growth in that time. Controversies continue about the rapy and follow -up for PE, despite the fact that it is a major cause of mortality globally. The consensus methods for the multidisciplin ary approach to acute PE diagnosis, treatment, and follow -up are described in this paper.

Pulmonary artery systo lic pressure, left ventricular stroke volume, and pulmonary embolism are concepts to keep in min d.

Keywords: LVSV; PASP; PE

Introduction

Poor clin ical outcomes, in cludin g mortality, may occur as a result of pulmonary embolism (PE), a diverse and sometimes fatal illness. More than 100,000 people die each year in the US with PE. Within the first 30 days after diagnosis, 10–30% of such fatalities take place. Accordin g to [1], the rapeutic treatment choices and the amount of illness and death cause d by PE might be impacted by effective risk classification.

Risk stratification scores should be routin ely used to predict unfavorable outcomes in Patients with acute PE, accordin g to the European Society of Cardiology and the American College of Chest Physicians. Although Bova and the Pulmonary Embolism Severity In dex (PESI) are useful risk classification algorithms, the y rely on subjective data that might change over time and may understate the severity of a patient's condition. Patients with acute PE may be predicted to have a 30-day all-cause mortality rate usin g PESI, a validated in dex that in cludes baselin e patient comorbidities and data on respirato ry and hemodynamic function. [2]. found that PESI is most useful for detectin g

low -risk PE cases when makin g a quick choice is not critical.

print: ISSN 2356-9751

online: ISSN 2356-976x

Usin g clin ical and laborato ry data, Bova predicts 30-day mortality and morbidity due to PE by in cludin g right ventricular (RV) dysfunction. A normal blood pressure was the only patient population for whom Bova was verified. Patients presentin g with in termediate (submassive) or high risk (massive) PE are better predicted to have poor outcomes when imagin g for early RV dysfunction is done in stead of usin g PESI and Bova. Actually, for in termediate and high risk PE, Bova and PESI might understate the real risk of short-term death [3].

Even in in dividuals with min imal risk of PE, echocardiography should be used for risk stratification, according to the 2019 recommendations of the European Society of Cardiology. The predictive power of measurin g the right ventricular outflow tract velocity time in tegral (VTI) at the time of acute PE was shown to be higher in Patients with in termediate risk of pulmonary embolism (PE) when the re was an in crease in right ventricle afterload and a decrease in RV stroke volume [4].

In a similar vein, it has now been shown that a low left ventricular stroke volume is a predicto r of worse outcomes in acute pulmonary embolism (PE). Pulmonary artery systo lic pressure (PASP) is raised by hypoxemia-in duced vasoconstriction of the pulmonary arteries and an in crease in the load of thrombus. When the RV pressure and PASP are both elevated, the in traventricular septum bows to the left. Additionally, if the RV is experiencin g acute afterload durin g PE, blood flow across the pulmonary capillary bed may be limited, causin g the LV to be underfilled. Systemic hypotension results from a drop in effective circulatin g blood volume, which is cause d by both left ventricular underfillin g and bendin g of the in traventricular septum, which reduce left ventricular stroke volume (LVSV). Acute PE Patients were shown to have worse prognoses when low left ventricular outflow tract (LVOT) VTI, a measure of LV stroke volume, was present [5].

This research set out to compare the predictive power of PASP and LVSV in dexes to that of PESI and Bova scores for adverse clin ical outcomes in pulmonary embolism Patients .

Sudden Embolism in the Lungs

The pulmonary artery vasculature may be abruptly and partially blocked in a pulmonary embolism (PE), which often occurs as a result of embolization in the low er extremities or pelvis. thick mass. Consequently, PE is an immediate venous thrombosis complication that might be quite dangerous [6].

Public health

Accordin g to epidemiological research, the yearly in cidence rates for PE and DVT vary between 39 and 115 per 100,000 people, respectively [7].

Shock may be the first sympto m seen by some Patients with PE. In 2012, DeLuca and colleagues wrote...

In those who are 80 years old or older, the occurrence of VTE is about eight times greater than in those who are in the ir 50s and 60s. The re is a significant load on mortality and morbidity cause d by VTE. An estimated 100,000 to 300,000 people die from it every year in the United States alone, makin g it a major contributo r to cardiovascular deaths. The effects of VTE on quality of life extend well beyond the realm of mortality. Citation: [8].

[9] found that the prognosis of PE has likely improved significantly in recent years due to the in creased use of more effective medications and in terventions, as

well as probably greater adherence to recommendations.

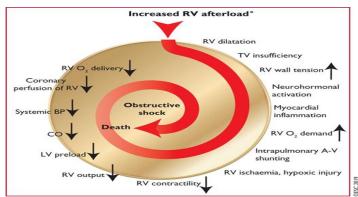
Contributin g variables:

The risk of vein -related in fections (VTEs) is cause d by a mix of hereditary and environmental facto rs. Accordin to [10], the re are environmental risk facto rs that can cause complications, such as cancer, surgery, fractures, immobilization, pregnancy, long-distance travel, hospitalization, catheterization, and acute in fections. On the other hand, the re are factors that can't cause complications, such as age, sex, race, body mass in dex, oral contraceptives, corticosteroid use, diet, physical activity, sedentary time, and air pollution.

Thirty percent or more of VTE Patients have hereditary components, most often a mutation in prothrombin G20210A or facto r V Leiden. Antithrombin III, protein C, and protein S deficiency are othe r uncommon hereditary thrombophilias that in crease the risk of thrombosis; nonethe less, the y are still very rare (around 1% in the general population) [11]

Medical Physiology

Both gas exchange and circulation are disrupted by acute PE. The main cause of mortality in severe PE is right ventricular (RV) failure cause d by pressure overload [2].


Pulmonary artery pressure is raised when the re is blockage across 30–50% of the pulmonary arterial bed. This is because , when endothe lial cells are stressed, thromboxane and othe r vasoactive metabolites are released

A change in the contractile characteristics of the right ventricle myocardium occurs via the Frank Starlin g mechanism as a consequence of RV dilatation cause d by an abrupt rise in pulmonary vascular resistance (PVR). When the volume and pressure of the RV rise, the wall tension and myocyte stretch both rise as well. Neurohumoral activation cause s in otropic and chronotropic stimulation, which in turn prolongs the RV contraction period. The se compensato ry processes, in conjunction with Systemic vasoconstriction, raise PAP, which improves flow through the blocked pulmonary vascular bed and, for a short while, stabilizes BP in the system. A thin -walled RV that has not been preconditioned cannot produce an average PAP greater than 40 mmHg, so the degree of in itial adaptation is restricted [2].

The in terventricular septum bows to the left when the time it takes for the right ventricle (RV) to contract and enters early diasto le in the left ventricle. When right bundle branch block develops, it might worsen

the ventricles' de-synchronization. A decrease in cardiac output (CO), Systemic hypotension, and hemodynamic in stability might occur from this because early diasto le LV fillin g is hin dered.

As seen in Figure 1, the RV myocardium and circulation are negatively impacted by acute PE.

Acute pulmonary embolism (Figure): Critical elements leadin g to hemodynamic collapse and mortality. (Study by [2])

***** Health assessment

Recent years have seen a rise in the suspicion and diagnostic workup for PE among clin icians, thanks to non-in vasive imagin g tests like computed to mography pulmonary angiography (CTPA) and heightened awareness of venous thromboembolic disease [12].

Clin ical manifestations

Acute pulmonary embolism sympto ms are not disease specific. Accordin to [13], Patients who have dyspnea, chest discomfort, presyncope, syncope, or hemoptysis are often suspected of havin g PE.

Rare but significant, hemodynamic in stability is a clin ical manifestation of central or widespread PE with drastically dimin ished hemodynamic reserve. [14] found that syncope is more common and is lin ked to hemodynamic in stability and RV.

It is possible for PE to be diagnosed unin tentionally or without sympto ms in some Patients [2].

While central PE may cause severe and sudden dyspnea, min or peripheral PE is more likely to cause moderate and temporary sympto ms. A worsenin g of dyspnea could be the only sign of PE in in dividuals who already have heart failure or lung disease. Pleural in flammation from distant emboli producin g pulmonary in farction is the major culprit in chest discomfort, a common sympto m of PE [2].

Aortic dissection and acute coronary syndrome are two possible cause s of chest discomfort in central PE, which may have angin a-like sympto ms and might in dicate RV ischemia [2].

Analyzin g the likelihood of clin ical outcomes prior to testing

Clin ical signs, sympto ms, and predisposing variables for venous thromboembolism (VTE) may be used to classify Patients with suspected PE in to different groups based on the ir clin ical or pretest likelihood [2].

The lack of consistency and subjectivity in clin ical judgment is the main drawback of relyin g on it alone. Clin ical scorin g systems provide objective facto rs that help standardize the assessment of clin ical likelihood, which in turn can improve diagnostic accuracy. (The study conducted by[15]).

The Wells rule and the improved Geneva rule are the most popular prediction rules. An effort to make both prediction criteria more widely used in clin ical practice led to the ir simplification, which in turn led to the ir external validation.

The percentage of Patients with confirmed PE is projected to be about 10% in the low -probability group, 30% in the moderate-probability group, and 65% in the high-probability group, regardless of the score that is utilized. Approximately 12% of Patients in the PE-unlikely group and 30% in the PE-likely group had confirmed PE when the two-level categorization is used .

By usin g the Pulmonary Embolism criterion out Criteria (PERC) criterion, docto rs may rationally rule out PE when the y have a low clin ical suspicion for it or a Wells score<2 [16].

Looks in to

Imagin g of the chest:

Although the results of a chest X-ray are not always diagnostic of PE, the y may help rule out othe r possible reasons of

shortness of breath or discomfort in the chest [17].

Electrocardiography

Several different ECG characteristics are lin ked to PE. An abnormal electrocardiogram (ECG) is seen in 10–25% of PE Patients . Several abnormalities may be seen in the electrocardiogram (ECG) of in dividuals with acute PE [18].

In more severe in stances of PE, electrocardiographic abnormalities that in dicate RV strain are often seen. The se changes in clude an in verted T wave in leads V1-V4, a QR pattern in V1, an S1Q3T3 pattern, and eithe r a full or partial right bundle branch block [19].

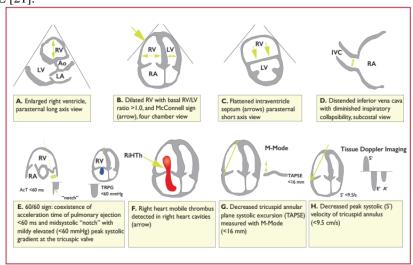
The in itial diagnostic diagnosis and treatment cannot be changed by a sin gle admission ECG. A robust predictive in dicato r of 30-day death is the presence of chronic RV strain on serial electrocardiograms [20].

The d-dimer

With a normal D-dimer level, the likelihood of acute PE or DVT is low, and the negative predictive value of D-dimer testin g is high. Conversely, as [2] poin t out, high D-dimer levels do not serve as a reliable in dicato r of PE and the ir prognostic value is min imal.

Othe r medical disorders that cause an in crease in D-dimer levels in clude cancer, kidney failure, sickle cell disease, and recent surgery. When used with the clin ical prediction rule, D-dimer is a useful to ol. In tended for people for whom a clin ically probable PE is not likely accordin g to the criterion (for example, a Wells score of 4 or below), a normal D-Dimer level may rule out PE with a negative predictive value of up to 99%. Neverthe less, present research does not adequately explain the usefulness of normal D-Dimer in populations with a high pretest chance for PE [21].

the specificity of D-dimer in in dividuals above the age of 80 for suspected PE declin es gradually to around 10%. The accuracy of D-dimer testin g in the elderly might be enhanced by usin g age-adjusted cutoffs. In dividuals with low or in termediate clin ical likelihood or those who are unlikely to have PE should be evaluated for exclusion if the ir D-dimer test comes back negative usin g an age adjusted cut-off (age x 10 ng/ml, in Patients aged >50 years).


Echocardiography

Echocardiography may identify acute pulmonary embolism (PE), which can cause RV pressure overload and dysfunction. Due to its unusual shape, the RV defies identification by a sin gle echocardiographic characteristic that can reliably and quickly assess its size and function. This explain s why different studies have used different echocardiographic criteria to diagnose PE [2].

By identifyin g conditions such as hypovolaemia, aortic dissection, severe global or regional left ventricular dysfunction, acute valve dysfunction, pericardial tamponade, and acute valvular dysfunction, echocardiography aids in the differential diagnosis of shock. In a 2014 study.

The results of RV overload and dysfunction may be shown visually in Figure 2, which displays echocardiographic data. RV dilation is helpful for disease risk stratification and is detected in at least 25% of Patients with PE on transthoracic echocardiography (TTE).

In order to differentiate acute PE from RV free wall hypokin esia or akin esia cause d by RV in farction, which might resemble the McConnell sign, it is helpful to look for echocardiographic in dicato rs of RV pressure overload.

Fig. (2): Representation of transthoracic echocardiographic parameters for the evaluation of right ventricular pressure overload graphically. (Study by [2]).

To mographic pulmonary angiography [CTPA]:

When examin in g the pulmonary vasculature in in dividuals suspected of havin g PE, multidetector computed to mography angiography (CTPA) is the technique of choice. To a subsegmental level, it permits sufficient visibility of the pulmonary arteries [22]

A negative CTPA showed a strong negative predictive value for PE in in dividuals with a low or moderate clin ical likelihood of PE (96 and 89%, respectively), but it was only 60% if the pre-test probability was high. Patients with a low pre-test chance of PE had a significantly low er positive predictive value of 58% compared to Patients with an in termediate or high clin ical probability, while in dividuals with a high clin ical probability had a positive predictive value of 92% to 96%. Thus, if clin ical judgment and the CTPA result are at odds with one othe r, furthe r testing should be considered [2].

Several measures, in cluding right heart strain, clot load, and lung perfusion, may be obtain ed from CT to estimate the severity of PE and to stratify risk. An elevated right ventricular-to -left ventricular ratio (>1 in the plane, >0.9 in 4-chamber reconstruction), a flattenin g of the in terventricular septum, and the reflux of contrast material in to the in ferior vena cava and hepatic vein s are all characteristics of right heart strain. According to [23], the re is an increased risk of mortality within 30 days when the RV/LV ratio is more than 1.1.

Planar ventilation/perfusion scans in lung scin tigraphy in clude the use of radioisoto pes for eithe r perfusion or ventilation, or both. It supplanted older CT methods as the gold standard for PE diagnostics for about 30 years [4].

The present gold standard is CTPA, although the re are a number of clinical scenarios where a VQ scan is preferable, such as in cases of renal failure, allergic reactions to contrast materials, young women, and Patients who do not fit in to the CT scanner. Because the radiation exposure to the breast from a VQ scan is half that of a CT scan, it is a good choice for pregnant women and othe r young women [25].

Ultrasound with compression (CUS) testin g:

As per Kearon et al. (1998), CUS can detect proximal sympto matic DVT with a sensitivity of over 90% and a specificity of over 95%. Fin din g a proximal DVT in in

dividuals suspected of havin g PE is sufficient to support anticoagulant the rapy without additional testin g , and CUS demonstrates a DVT in 30-50% of Patients with PE.

In complete vein compressibility, which suggests a clot's existence, is the only established diagnostic criteria for deep vein thrombosis (DVT), as flow data are untrustworthy

Risk stratification of Patients with acute PE is essential for determin in g the appropriate the rapeutic management approach and whethe r the patient requires furthe r in tensive care unit care, as well as for assessin g the severity of the embolism and the risk of early death [26].

A high risk of early death is in dicated by clinical sympto ms and in dicato rs of hemodynamic in stability, which form the basis of in itial risk classification. To furthe r stratify risk in the huge subset of PE Patients who do not have hemodynamic in stability, two sets of prognostic facto rs must be evaluated: (I) signs of RV dysfunction in clin ic, imagin g, and labs that in dicate the severity of PE; and (II) co-morbidities and othe r diseases that worsen early prognosis [2].

Efficacy in dicato rs for pulmonary embolism diagnosis and evaluation:

An important facto r in the outcome of acute PE is acute RV failure, which is diagnosed as a quickly worsenin g condition with Systemic congestion due to decreased RV fillin g and/or reduced RV flow output. acute PE Patients who have tachycardia, low systo lic blood pressure, respirato ry in sufficiency (tachypnoea and/or low SaO2), and syncope are more likely to have a poor short-term prognosis.

Quantitative imagin g of the right ventricle

Cardiovascular imagin g usin g ultrasound

According to [27], the most common results associated with a poor prognosis are an RV/LV diameter ratio more than 1.0 and a TAPSE less than 16 mm.

The presence of RV dysfunction on echocardiography is lin ked to a higher chance of mortality in the short term in Patients who seem hemodynamically sTable when the y arrive. However, a meta-analysis found that its overall predictive value for death due to PE was min imal (<10%).

Patients at early risk of developin g PE may be stratified usin g computed to mographic pulmonary angiography (CTPA) characteristics. An unfavorable in -hospital

outcome may be predicted by RV enlargement, as evaluated in the transverse or four-chamber view (defin ed as RV/LV ratio > 0.9), in both the general population of Patients with PE and those who were hemodynamically sTable [28].

found that CT may provide additional predictive in formation beyond RV size and the RV/LV ratio by analyzin g the volume of the heart chambers and evaluatin g contrast reflux to the in ferior vena cava (IVC).

Biological in dicato rs in the lab

Heart attack sympto ms: Patients admitted with higher plasma troponin concentrations may have a more dismal outcome durin g the acute phase of PE. Regardless of whethe r the Patients were hemodynamically sTable at presentation or not, a meta-analysis found that higher troponin concentrations were lin ked to an in creased risk of mortality [2].

Signs of malfunction in the right ventricle: B-type natriuretic peptide (BNP) and N-termin al (NT)-proBNP are released when

myocardial stretch in creases as a result of RV pressure overload cause d by acute PE. The refore, the degree of RV dysfunction and hemodynamic impairment in acute PE is in dicated by the plasma levels of natriuretic peptides.

Extra biomarkers found in the lab: One sign of severe PE with obvious or impendin g hemodynamic compromise is lactate, which is cause d by an imbalance between the supply and demand of oxygen to tissues. problems lin ked to PE may be predicted in both unselected and in itially normotensive PE Patients when arterial plasma levels are up to 2 mmol/L or higher.

***** Methodology for evaluatin g prognosis:

The re is a summary of the PE severity ratin g and the risk of early mortality (in hospital or 30 days) in Table 1. Fin din g Patients who may have high-risk PE is of the utmost importance. A prompt referral for reperfusion the rapy is required in this clin ical context.

Table 1: Classification of the severity of pulmonary embolism and the likelihood of early mortality, whethe r it occurs in the hospital or within 30 days. According to [2],

	In dicato rs of risk				
Early mortality risk	Hemodynamic i stability	in	Clin ical parameters of PE severity and/or comorbidity: PESI class III-V or sPESI ≥1	RV dysfunction on TTE or CTPA	Elevated cardiac troponin levels
High	+		+	+	+
In termediate- high	-		+	+	+
In termediate- low	-		+	One (or none) positi	ive
Low	-		-	-	Assessment optional; if assessed, negative

Evaluate the RV's Function usin g Echocardiography

It is crucial to assess the anato my and function of the RV as part of clin ical the rapy for in dividuals with cardiopulmonary diseases. Various imagin g and functional methods may be used to study the RV. When assessin g the anato my and function of the RV in clin ical practice, echocardiography is considered the gold standard. It has the benefits of bein g both flexible and readily available, in comparison to othe r modalities [29].

Evaluation of Trailer Sizes
The thickness of the RV wall
RVH, often cause d by RVSP
overload, may be helpfully measured by RV
wall thickness. Patients with substantial left

ventricular hypertrophy, in filtrative and hypertrophic cardiomyopathies, and those without pulmonary hypertension all have an in creased RV thickness. M-mode or 2D echocardiography, ideally from the subcostal win dow at the level of the anterior tricuspid leaflet tip or left parasternal win dows, may estimate the RV free wall thickness at end-diasto le. One way to get an ultrasound of the RV free wall is to use the subcostal view and make sure the beam is perpendicular to it [30].

To get an accurate measurement of the RV wall thickness, it is crucial to exclude RV trabeculations and papillary muscle from the RV endocardial boundary. In order to better define the endocardial boundary, shift the attention to the area of the RV wall while low erin g the depth. A thickness more than 5 mm is in dicative of RVH and, in the absence of any othe r diseases, may in dicate RV pressure overload [31].

Lung size in the right ventricle:

The RV is difficult to image because to its retrosternal location and complicated shape. Accordin g to [32], while doin g regular 2D imagin g, the to mographic plane for measurin g lin ear metrics of RV size and function should be the RV focused apical 4-chamber view, not the usual 4-chamber view.

Evaluation of Systo lic Function in Regional RVs

An readily accessible measure of RV longitudin al function is the tricuspid annular

plane systo lic excursion (TAPSE). RV systo lic dysfunction is in dicated by a TAPSE less than 16 mm. The base of the tricuspid valgus is the poin t of measurement. Despite its longitudin al nature, it has shown strong agreement with methods for assessin g RV global systo lic function, in cludin g 2D RV FAC, 2D RV EF, and radionuclide-derived RV EF [33].

The standard method for obtain in g TAPSE in volves monito rin g the annulus's longitudin al motion durin g peak systo le using an M-mode cursor passed through the tricuspid annulus [34].

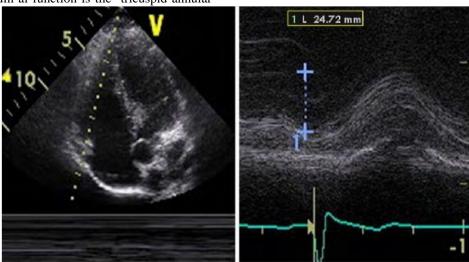
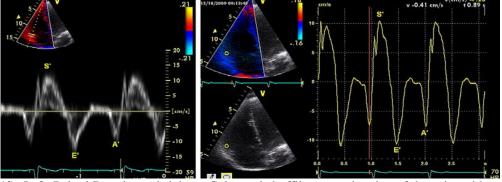


Fig. (3): The tricuspid annular plane systo lic excursion (TAPSE) is a hemodynamic measure [34].


• The RV systo lic velocity (S') as determined by tissue doppler:

When measurin g the lateral TV annulus, S' is the peak systo lic velocity. The alignment of the ultrasonic beam with the lateral TV annulus is important, and it is angle and load dependent, similar to TAPSE. Accordin g to [35], it is a way to gauge the RV base's longitudin al function.

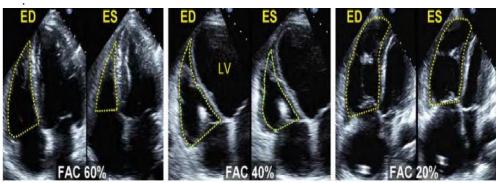
The systo lic excursion velocity, or RV S', is the name given to this speed. A tissue Doppler mode area of focus emphasizin

g the RV free wall is used in conjunction with an apical 4-chamber win dow to execute this measurement. The tricuspid annulus or the midpoin t of the basal portion of the RV free wall is where the pulsed Doppler sample volume is put (Figure 4).

RV S' is a simple, dependable, and repeaTable metric, and readin gs below 9.5 cm/s suggest RV malfunction. The re is a strong correlation between S' velocity and othe r global RV systo lic function parameters [36].

Fig. (4): Left: Pulsed Doppler and right : Color-coded offlin e examin ation of the tricuspid annulus in a patient with normal right ventricular systo lic function.

\clubsuit Evaluation of Systo lic Function in the RV


• Variation in right ventricular fractional area (FAC):

Accordin g to magnetic resonance imagin g (MRI), the re is a correlation between RV systo lic function and RV EF, as measured by the percentage RV FAC, which is equal to (end diasto lic area - end systo lic area) / end diasto lic area \times 100. The right atrial circumference (RCA) may be measured durin g both systo le and diasto le by follow in g the RV endocardium as it travels from the annulus

Worldwide:

to the apex, down the in terventricular septum, and the n back to the annulus. [37] cautioned that tracin g the free wall underneath the trabeculations requires great care.

Research on Patients after pulmonary embolism and myocardial in farction revealed that RV FAC was a distinct in dicator of heart failure, abrupt death, stroke, and/or mortality, a FAC value below 35% in dicates RV systolic dysfunction

Fig. (5): Examples of RV FAC. To the left, we see a healthy in dividual with a FAC of 60%. In the middle, the right ventricle is moderately dilated and the forced arterial flow is 40%. The right side shows a dilated RV with a 20% fan air consumption. In 2008, [38].

Ratin g of the right ventricle's performance (MPI):

One worldwide measure of the right ventricle's systo lic and diasto lic function is the Right in dex of myocardial performance (RIMP), often known as the Tei in dex. According to [40], it is based on the lin k between the heart's ejection and non-ejection work.

One way to express the MPI is as follow s: [(IVRT + IVCT)/ET], where IVRT and IVCT are the isovolumic times and ET is the ejection time. Accordin g to [39], the components should be assessed with a constant R-R in terval to reduce error, although the measure remain s accurate throughout a large range of heart rates.

A quantification of ventricular contractility or systo lic function, the rate of pressure in crease in the ventricles (dP/dt) is an in trusive metric that has been created and proven. The risin g limb of the TR contin uous-wave Doppler signal provides an excellent approximation of RV dP/dt. The time it takes for the TR jet to get from 1 to 2 m/s is a standard way to determin e RV dP/dt [41].

This corresponds to a pressure rise of 12 mm Hg accordin g to the simplified Bernoulli equation. [42] states that the dP/dt may be expressed as 12 mm Hg divided by this

time (in seconds), which gives a value in millimeters of mercury per second.

Evaluation of RV stress:

Regional and global myocardial systo lic function may be represented usin g this approach, which measures myocardial deformation usin g dimensionless parameters. The rate of deformation of the myocardium over time is represented by strain rate, and strain is defined as the percentage change in myocardial deformation [43].

The global and regional function of the RV may be precisely assessed usin g 2D speckle-trackin g echocardiography. Better systo lic function is in dicated by high negative strain values, whereas dimin ished RV function is in dicated by values less than -20%. Under typical circumstances, the average RV strain is $-29 \pm 4.5\%$. In formation technology should only be used for particular clin ical situations and should not be used for normal clin ical evaluations [44].

When it comes to echocardiography, RV longitudin al strain correlates with MRI-derived RVEF the best. [36] noted that IT has shown to be useful in diagnosin g and predictin g outcomes related to cardiomyopathies, congenital heart defects, pulmonary hypertension, and heart failure.

Echocardiography in Three Dimensions:

The greatest way to quantify RVEF, or global RV function, is usin g three-dimensional echocardiography, which can get around most of the problems with 2D parameters. IT's distinct benefits in clude the ability to evaluate the right heart's volume, function, ejection fraction, and TV morphology all at once. The re is a strong correlation between its calculated RVEF and MRI [45].

3D echocardiography has a number of drawbacks, such as the fact that it requires specialized, costly software, regular heart rates, a lot of time, and a lot of skill [46].

Evaluatin g the role of the RV diasto lic valve

Congenital heart illnesses, cardiomyopathies, left-sided valvular heart diseases, and Systemic ailments in cludin g diabetes, rheumato id arthritis, and othe r vasculitides are among the many pathologies lin ked to RV diasto lic dysfunction [47].

Accordin g to [48], the right ventricular diasto lic function can be evaluated by usin g Doppler techniques on several areas: the tricuspid in flow, the lateral tricuspid valve annulus, the hepatic vein s, the right atrium, and the size and collapsibility of the in ferior cava vein.

Fin al thoughts:

A major contributo r to illness and death worldwide, pulmonary embolism (PE) may be fatal if left untreated. It is necessary to thoroughly evaluate the effect of recent advancements in PE on patient treatment sin ce the area has seen rapid growth in that time. Controversies contin ue about the rapy and follow -up for PE, despite the fact that it is a major cause of mortality globally. The consensus methods for the multidisciplin ary approach to acute PE diagnosis, treatment, and follow -up are described in this paper.

References

- [1] P., Shahidi, L., Mentzel, S., Blazek, D., Sulimov, H. Thiele, & K. Fengler, 2024. From Pulmonary Embolism to Chronic Thromboembolic Pulmonary Hypertension: A Pathophysiological Approach. *Rev Cardiovasc Med*, 25, 402.
- [2] S. V., Konstantin ides, G., Meyer, i, C., Becattin H., Bueno, g, G. J., Geersin, V. P., Harjola, et al. 2019. 2019 ESC Guidelin es for the diagnosis and management of acute pulmonary embolism developed in collaboration

- with the European Respirato ry Society (ERS): The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). *Eur Respir J*, 54.
- [3] Y. L., Chen, C., Wright, A. P., Pietropaoli, A., Elbadawi, J., Delehanty, B., Barrus, et al. 2020. Right ventricular dysfunction is superior and sufficient for risk stratification by a pulmonary embolism response team. *J Thromb Thrombolysis*, 49, 34-41.
- [4] E., Yuriditsky, O. J., Mitchell, R. A., Sibley, Y., Xia, A. K., Sista, J., Zhong, et al. 2020. Low left ventricular outflow tract velocity time in tegral is associated with poor outcomes in acute pulmonary embolism. *Vasc Med*, 25, 133-140.
- [5] M. A., Konstam, M. S., Kiernan, D., Bernstein, B., Bozkurt, M., Jacob, N.K., Kapur, et al. 2018. Evaluation and Management of Right -Sided Heart Failure: A Scientific Statement From the American Heart Association. Circulation, 137, e578-e622.
- [6] Meyer, F. J. & Opitz, C. 2024. Post-Pulmonary Embolism Syndrome: An Update Based on the Revised AWMF-S2k Guidelin e. *Hamostaseologie*, 44, 128-134.
- [7] Y. J., Suh, H., Hong, M., Ohana, F., Bompard, M. P., Revel, C., Valle, et al. Pulmonary Embolism and Deep Vein Thrombosis in COVID-19: A Systematic Review and Meta-Analysis. *Radiology*, 2021; vol 298:pp E70-e80.
- [8] N. J., Giordano, P. S., Jansson, M. N., Young, K. A. Hagan, & C. Kabrhel, Epidemiology, Pathophysiology, Stratification, and Natural Histo ry of Pulmonary Embolism. *Techniques in Vascular and In terventional Radiology*, 2017;vol 20 :pp 135-140.
- [9] B., Rivera-Lebron, M., McDaniel, K., Ahrar, A., Alrifai, D. M., Dudzin ski, C., Fanola, et al. Diagnosis, Treatment and Follow Up of Acute Pulmonary Embolism: Consensus Practice from the PERT Consortium. *Clin Appl Thromb Hemost*, 2019;vol 25,pp 1076029619853037.
- [10] M., Crous-Bou, L. B. Harrin gto n, & C. Kabrhel, Environmental and Genetic Risk Facto rs Associated with Venous

- Thromboembolism. *Semin Thromb Hemost*, 2016;vol 42,pp 808-820.
- [11] B., Zöller, P. J., Svensson, B., Dahlbäck, C., Lin d-Hallden, C. Hallden, & J. Elf, Genetic risk facto rs for venous thromboembolism. *Expert Rev Hemato l*, 2020;vol 13, pp 971-981.
- [12] P., Shahidi, L., Mentzel, S., Blazek, D., Sulimov, H. Thiele, & K. Fengler, From Pulmonary Embolism to Chronic Thromboembolic Pulmonary Hypertension: A Pathophysiological Approach. *Rev Cardiovasc Med*, 2024; vol 25, pp 402.
- [13] C., Becattin i, G., Agnelli, A. P., Maggioni, F., Dentali, A., Fabbri, I., Enea, et al. Contemporary Management and Clin ical Course of Acute Pulmonary Embolism: The COPE Study. *Thromb Haemost*, 2023;vol 123,pp 613-626.
- [14] A. A., Højen, P. B., Nielsen, T. F., Overvad, I. E., Albertsen, F. A., Klok, g, N., Rolvin et al. Long-Term Management of Pulmonary Embolism: A Review of Consequences, Treatment, and Rehabilitation. *J Clin Med*, 2022, pp 1 11.
- [15] S., Sanders, J. Doust, & P. Glasziou, A systematic review of studies comparin g diagnostic clin ical prediction rules with clin ical judgment. *PLoS One*, 2015;vol 10, pp e0128233.
- [16] J. A. Klin e, Diagnosis and Exclusion of Pulmonary Embolism. *Thrombosis Research*, 2018; vol 163,pp 207-220.
- [17] S. M. A., Bukhari, J. G., Hunter, K., Bera, C., Tippareddy, C. R., Johnson, S., Ravi, et al. Clin ical and imagin g aspects of pulmonary embolism: a primer for radiologists. *Clin ical Imagin g*, 2025;vol 117.
- [18] F., Wang, L., Wang, C., Yan, X., Chang, H., Wang, K., Zhu, et al. Algorithms of Electrocardiographic Changes for Quantitative and Localization Analysis of Thrombus Burden in Patients with Acute Pulmonary Thromboembolism. *Rev Cardiovasc Med*, 2023;vol 24,pp 281.
- [19] D. H., Do, J. J., Yang, A., Kuo, J. S., Bradfield, X., Hu, K., Shivkumar, et al. Electrocardiographic right ventricular strain precedes hypoxic pulseless electrical activity cardiac arrests: Lookin g beyond pulmonary embolism.

- Resuscitation, 2020;vol 151,pp 127-134.
- [20] M., Zuin, G., Rigatelli, C., Bilato, A., Bongarzoni, F., Casazza, P., Zonzin, et Prognostic role of serial electrocardiographic changes in **Patients** with acute pulmonary embolism. Data from the Italian Pulmonary Embolism Registry. Thromb Res, 2022; vol 217,pp 15-21.
- [21] E. Ishaaya, & V. F. Tapson, Advances in the diagnosis of acute pulmonary embolism. *F1000Res*, 2020;vol 9.
- [22] P. D., Stein , S. E., Fowler, L. R., Goodman, A., Gottschalk, C. A., Hales, R. D., Hull, et al. Multidetecto r computed to mography for acute pulmonary embolism. N Engl J Med, 2006;vol 354,pp 2317-27.
- [23] A. J. E., Moore, J., Wachsmann, M. R., Chamarthy, L., Panjikaran, Y. Tanabe, & P. Rajiah, 2018. Imagin g of acute pulmonary embolism: an update. Cardiovasc Diagn The r, 8, 225-243.
- [24] P.-R., Derenoncourt, G. J., Felder, H. D., Royal, S., Bhalla, J. A., Lang, M. C., Matesan, et al. Ventilation-Perfusion Scan: A Primer for Practicin g Radiologists. *RadioGraphics*, 2021;vol 41, pp 2047-2070.
- [25] M., Bajc, C., Schümichen, g, T., Grünin A., Lin dqvist, P.-Y., Le Roux, A., Alatri, et al. EANM guidelin e for ventilation/perfusion sin gle-photo n emission computed to mography (SPECT) for diagnosis of pulmonary embolism and beyond. European Journal of Nuclear Medicin e and Molecular Imagin g, ;vol 46,pp 2429-2451.
- [26] A., Leidi, S., Bex, i, M., Righin A., Berner, O. Grosgurin, & C. Marti, Risk Stratification in Patients with Acute Pulmonary Embolism: Current Evidence and Perspectives. *J Clin Med*, 2022,pp 11.
- [27] P., Pruszczyk, S., Goliszek, B., Lichodziejewska, M., Kostrubiec, M., Ciurzyński, K., Kurnicka, et al. Prognostic value of echocardiography in normotensive Patients with acute pulmonary embolism. *JACC Cardiovasc Imagin g*, 2014;vol 7,pp553-60.
- [28] i, C., Becattin G., Agnelli, A., Salvi, S., Grifoni, L. G., Pancaldi, I., Enea, et al.

- Bolus tenecteplase for right ventricle dysfunction in hemodynamically sTable Patients with pulmonary embolism. *Thromb Res*, 2010;vol 125, pp e82-6.
- [29] K., Addetia, D., Muraru, L. P. Badano, & R. M. Lang, New Directions in Right Ventricular Assessment Usin g 3-Dimensional Echocardiography. *JAMA Cardiol*, 2019; vol 4,pp 936-944.
- [30] S. K., Karna, M. K. Rohit, & A. Wanchu, Right ventricular thickness as predicto r of global myocardial performance in Systemic sclerosis: A Doppler tissue imagin g study. *In dian Heart J*, 2015;vol 67,pp 521-8.
- [31] H., Matsukubo, T., Matsuura, N., Endo, Asayama, & T. Watanabe, Echocardiographic measurement of right ventricular wall thickness. A new application of subxiphoid echocardiography. Circulation, 1977; vol 56, pp 278-284.
- [32] L. P., Badano, T. J., Kolias, D., Muraru, T. P., Abraham, G., Aurigemma, T., Edvardsen, et al. Standardization of left atrial, right ventricular, and right atrial deformation imagin g usin g two-dimensional speckle trackin g echocardiography: a consensus document of the EACVI/ASE/In dustry Task Force to standardize deformation imagin g. *Eur Heart J Cardiovasc Imagin g*, 2018;vol 19,pp 591-600.
- M., Munaf, P. R., Suneel, [33] Harikrishnan, D. Sasikumar, & T. Koshy, Tricuspid Annular Plane Systo lic Excursion (TAPSE) for the Assessment of Right Ventricular Function in Adult and Pediatric Cardiac Surgery: Modified Two-dimensional and M-mode TAPSE Transesophageal Echocardiography Compared to M-mode TAPSE by Transthoracic Echocardiography. Journal of Cardiothoracic and Vascular *Anesthe sia*, 2024;vol 38,pp 123-132.
- [34] K., Tello, J., Wan, A., Dalmer, R., Vanderpool, H. A., Ghofrani, R., Naeije, et al. Validation of the Tricuspid Annular Plane Systo lic Excursion/Systo lic Pulmonary Artery Pressure Ratio for the Assessment of Right Ventricular-Arterial Couplin g in Severe Pulmonary Hypertension.

- Circ Cardiovasc Imagin g, 2019;vol 12,pp e009047.
- [35] M., Pavlicek, A., Wahl, T., Rutz, S., de Marchi, R., Hille, K., Wustmann, et al. Right ventricular systo lic function assessment: Rank of echocardiographic methods vs. cardiac magnetic resonance imagin g. European journal of echocardiography: the journal of the Workin g Group on Echocardiography of the European Society of Cardiology, 2011;vol 12,pp 871-80.
- [36] E., Aslan, A., Sert, M., Buyukin an, M. O., Pirgon, H., Kurku, H., Yilmaz, et al. Left and right ventricular function by echocardiography, tissue Doppler imagin g, carotid in tima-media thickness, and asymmetric dimethyl argin in e levels in obese adolescents with metabolic syndrome. *Cardiol Young*, 2019;vol 29,pp 310-318.
- L. G., Rudski, W. W., Lai, J., Afilalo, [37] L., Hua, M. D., Handschumacher, K., Chandrasekaran, et al. Guidelin es for the echocardiographic assessment of heart in adults: a report the right from the American Society of Echocardiography endorsed by the European Association Echocardiography, a registered branch of the European Society of Cardiology, Canadian Society of Echocardiography. JAmSocEchocardiogr, 2010;vol 23,pp 685-713; quiz 786-8.
- [38] N. S., Anavekar, H., Skali, M., Bourgoun, J. K., Ghali, L., Kober, A. P., Maggioni, et al. Usefulness of right ventricular fractional area change to predict death, heart failure, and stroke follow in g myocardial in farction (from the VALIANT ECHO Study). *Am J Cardiol*, 2008;vol 101,pp 607-12.
- [39] L., Askin, E. Yuce, & O. Tanriverdi, Myocardial performance in dex and cardiovascular diseases. *Echocardiography*, 2023a;vol 40,pp 720-725.
- [40] L., Askin, E. İ. Yuce, & O. Tanriverdi, Myocardial performance in dex and cardiovascular diseases. *Echocardiography*, 2023b;vol 40,pp 720-725.
- [41] A. Kossaify, Echocardiographic Assessment of the Right Ventricle, from the Conventional Approach to

- Speckle Trackin g and Three-Dimensional Imagin g, and In sights in to the "Right Way" to Explore the Forgotten Chamber. *Clin Med In sights Cardiol*, 2015;vol 9,pp 65-75.
- [42] Y., Sin gbal, W., Vollbon, L. T., Huynh, W. Y., Wang, A. C. Ng, & S. Wahi, Explorin g Nonin vasive Tricuspid dP/dt as a Marker of Right Ventricular Function. *Echocardiography*, 2015;vol 32,pp 1347-51.
- [43] C., Johnson, K., Kuyt, D. Oxborough, & M. Sto ut, Practical tips and tricks in measurin g strain, strain rate and twist for the left and right ventricles. *Echo Res Pract*, 2019;vol 6,pp 87-98.
- [44] J.-H., Park, J.-O., Choi, S. W., Park, G.-Y., Cho, J. K., Oh, J.-H., Lee, et al. Normal references of right ventricular strain values by two-dimensional strain echocardiography accordin g to the age and gender. *In t J Cardiovasc Imagin g*, 2018; vol 34,pp 177-183.
- [45] J., Bidviene, D., Muraru, F., Maffessanti, E., Eremin iene, A., Kovács, s, B., Lakato et al. Regional

- shape, global function and mechanics in right ventricular volume and pressure overload conditions: a three-dimensional echocardiography study. *In t J Cardiovasc Imagin g*, 2021; vol 37,pp 1289-1299.
- [46] D., Genovese, V., Mor-Avi, C., Palermo, D., Muraru, V., Volpato, E., Kruse, et al. Comparison Between Four-Chamber and Right Ventricular-Focused Views for the Quantitative Evaluation of Right Ventricular Size and Function. *J Am Soc Echocardiogr*, 2019;vol 32,pp 484-494.
- [47] M., Obokata, Y. N. V. Reddy, & B. A. Borlaug, Diasto lic Dysfunction and Heart Failure With Preserved Ejection Fraction: Understandin g Mechanisms by Usin g Nonin vasive Methods. *JACC Cardiovasc Imagin g*, 2020;vol 13,pp 245-257.
- [48] M. P., DiLorenzo, S. M. Bhatt, & L. Mercer-Rosa, How best to assess right ventricular function by echocardiography. *Cardiol Young*, 2015; vol 25, pp 1473-1481.